Predicting Chronic Kidney Disease using MachineLearning Algorithms
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 Abstract—In today's busy world, health is often neglected until symptoms appear. Chronic Kidney Disease (CKD) is particularly challenging as it often shows no symptoms, making early detection difficult and increasing the risk of severe complications. Machine learning (ML) provides a solution with its strong predictive capabilities.This study evaluated nine ML models, including KNN, Decision Tree, Random Forest, XGBoost, Stochastic Gradient Boosting, Gradient Boosting Classifier, CatBoost, Ada Boost and Extra Tree Classifier proving its effectiveness in CKD prediction.
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I. INTRODUCTION
Chronic Kidney Disease (CKD) is a progressive condition characterized by the gradual loss of kidney function over time. It has become a major global health issue, affecting millions of individuals worldwide. Early detection of CKD is critical to prevent severe complications, including kidney failure and cardiovascular diseases. However, the asymptomatic nature of CKD, particularly in its early stages, poses significant challenges for timely diagnosis and treatment.

In recent years, advancements in machine learning (ML) have revolutionized the healthcare industry, offering robust solutions for disease prediction and diagnosis. ML algorithms excel at analyzing complex datasets, identifying patterns, and making accurate predictions, even in cases where symptoms are minimal or absent. These capabilities make ML an ideal tool for addressing the challenges associated with CKD detection.

II. Related work
S.Gopika, et al. [8] have developed a method for predicting CKD using cluster analysis. The major goal is to use the clustering technique to identify kidney function failure. The findings of the trial showed that the Fuzzy C algorithm produces better outcomes and has an accuracy rate of 89%.

Based on an aging dataset of CKD, Deepika et al. [12] developed a project for the prediction of chronic kidney disease. 24 attributes and 1 target variable were present in the dataset. They used the KNN and Naïve Bayes supervised machine learning algorithms to develop the model. KNN and Nave Bayes both obtained accuracy levels of 91% and 97%, respectively. 

Kidney function test (KFT) dataset was gathered by Vijayarani and Dhayanand [10] from medical labs, research facilities, and hospitals. The dataset included 584 occurrences, 6 attributes, and the support vector machine (SVM) and artificial neural network classifier techniques (ANN). It was discovered that ANN had the highest accuracy, reaching 87.7%.
III. PROPOSED SYSTEM
The primary goal of the proposed system is to develop a more accurate and robust predictive model for Chronic Kidney Disease (CKD) using various machine learning algorithms compared to the existing system. The aim is to facilitate early detection of CKD and improve patient outcomes.
Key Components and Approaches:
The system will utilize a range of ML algorithms including:
· Decision Tree Classifier
· Random Forest Classifier
· k-Nearest Neighbors (k-NN)

· AdaBoost

· Stochastic Gradient Boosting

· Gradient Boost Classifier

· CatBoost

· XGBoost

· Extra Trees Classifier

Comparative Analysis:
· Each of these algorithms will be trained and evaluated on the same data.
· The performance of each algorithm will be measured and compared using metrics like accuracy, precision, recall, F1-score and the area under ROC curve.

· This will help determine the best-performing model for predicting CKD.
IV. EXPLORATORY DATA ANALYSIS
Finding broad patterns in the data is the goal of exploratory data analysis, or EDA. Outliers and potentially surprising data elements are included in these patterns. In any data analysis process, EDA is a crucial initial step. Designing statistical analyses that produce insightful results can be aided by knowing the locations of outliers and the relationships between variables. Sites in biological monitoring data are probably subject to several stresses. Thus, initial explorations of stressor correlations are critical before one attempt to relate stressor variables to biological response variables. EDA can provide insights into candidate causes that should include in a causal assessment
[image: image1.png]df.info()

<class *pandas. core.frame.DataFrame’>
RangeIndex: 400 entries, © to 399
Data columns (total 25 columns):
#  Column Non-Null Count Dtype

o age 391 non-null  floatss
1 blood_pressure 388 non-null  floatss
2 specific_gravity 353 non-null  floatss
3 albumin 354 non-null  floatss
4 sugar 351 non-null  floatss
5 red_blood_cells 248 non-null  object
6 pus_cell 335 non-null  object
7 pus_cell_clumps 396 non-null  object
& bacteria 396 non-null  object
9 blood_glucose_random 356 non-null  floatsd
10 blood_urea 381 non-null  floatss
11 serum_creatinine 383 non-null  floatss
12 sodium 313 non-null  floatss
13 potassium 312 non-null  floatss
14 haemoglobin 348 non-null  floatss
15 packed_cell_volume 330 non-null  object
16 white_blood cell count 295 non-null  object
17 red blood_cell count 270 non-null  object
15 hypertension 398 non-null  object
19 diabetes mellitus 398 non-null  object
20 coronary_artery_disease 398 non-null  object
21 appetite 399 non-null  object
22 peda_edema 399 non-null  object
23 aanemia 399 non-null  object
24 class 400 non-null  object

dtypes: float6a(11), object(14)
memory usage: 78.2+ KB




[image: image2.png]# converting necessary columns to numerical type

df[ ' packed_cell_volume'] = pd.to_numeric(df['packed_cell_volume'], errors='coerce’)
df['white_blood_cell_count'] = pd.to_numeric(df[ 'white_blood_cell_count'], errors='coerce"')
df[ ' red_blood_cell_count'] = pd.to_numeric(df[’red_blood_cell_count'], errors='coerce’)
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 [image: image4.png]# Extracting categorical and numerical columns

cat_cols = [col for col in df.columns if df[col].dtype == 'object']
nun_cols = [col for col in df.colums if dflcol].dtype != 'object’]




[image: image5.png]# replace incorrect values

df["diabetes_mellitus’].replace(to_replace = {'\tno’:'no’,"\tyes':'yes',’ yes':'yes'},inplace=True)

df["coronary_artery_disease’] = df[’coronary_artery_disease’ ].replace(to_replace = "\tno', valu

no’)

dfl’class’] = df['class’].replace(to_replace = {'ckd\t': 'ckd’, 'notckd’: 'not ckd'})

df[‘class'] = df['class’].map({'ckd’': 8, 'not ckd': 1})
dfl"class’] = pd.to_numeric(df[class’], errors='coerce’)
cols = ['diabetes_mellitus’, 'coronary_artery_disease’, 'class']

for col in cols:
print(f"{col} has {dflcol].unique()} values\n")

diabetes_mellitus has ['yes' 'no’ nan] values
coronary_artery_disease has ['no’ 'yes' nan] values

class has [0 1] values



[image: image6.png]# checking numerical features distribution

plt.figure(figsize = (26, 15))
plotnumber

for column in num_cols:
if plotnumber <= 14:
ax = plt.subplot(3, 5, plotnumber)
sns.distplot(dflcolumn])
plt.xlabel(column)

plotnunber +=

plt. tight_layout()
plt.show()
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 [image: image9.png]# Tooking at categorical coluand

Pl Figure(rigsize
Plotnumer - |

(s, 1)

for colum in cat cols.
if plotnunber <= 11
ax = plt subplot(3, 4, plotnumber)
ans_councploe(df{colum], palette = “rocket”)
Pl x1abel (column)

plotnumser +- 1

Pl cighe Layout()
Pt anon()
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[image: image13.png]# heatnap of data
pit.figure(figsize = (15, 8))

ans.heatmap(df..corr(), annot = True, linewidth:
p1t.show()

= 2, linecolor = 'lightgrey')
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V. ALGORITHMS USED

· Decision Tree Classifier
A Decision Tree is a supervised learning algorithm used for both classification and regression tasks. It splits the data into branches at decision nodes based on feature values, forming a tree structure. Each leaf node represents a class label or decision outcome. Decision Trees are intuitive and work well on non-linear data but are prone to overfitting.

· Random Forest Classifier
A Random Forest is an ensemble learning algorithm that creates multiple Decision Trees during training and combines their outputs for more accurate predictions. It reduces overfitting by averaging or voting across trees, making it robust and effective on a variety of datasets.
· k-Nearest Neighbors (k-NN)
The k-Nearest Neighbors (k-NN) algorithm is a simple, non-parametric method used for classification and regression. It classifies a data point based on the majority class of its k nearest neighbors (using a distance metric like Euclidean distance). It’s computationally expensive for large datasets.
· AdaBoost (Adaptive Boosting)
AdaBoost is a boosting ensemble method that combines weak learners, typically Decision Trees, into a strong learner. It assigns higher weights to misclassified samples in subsequent iterations, improving accuracy iteratively. It's sensitive to noise and outliers.
· Stochastic Gradient Boosting (SGB)
Stochastic Gradient Boosting is a variation of Gradient Boosting that introduces randomness by subsampling the data before creating each tree. This reduces overfitting and improves generalization performance.

· Gradient Boosting Classifier
Gradient Boosting is an ensemble technique where weak learners (typically Decision Trees) are sequentially trained, with each one    attempting to correct the errors of the previous ones. It minimizes a loss function by applying gradient descent, leading to a strong predictive model.
· CatBoost

CatBoost (Categorical Boosting) is a gradient boosting algorithm designed specifically to handle categorical features without requiring extensive preprocessing. It’s fast, efficient, and avoids overfitting, making it ideal for datasets with many categorical variables.
· XGBoost (Extreme Gradient Boosting)
XGBoost is an optimized implementation of Gradient Boosting that is fast, efficient, and highly customizable. It incorporates techniques like regularization to reduce overfitting and handles missing values effectively. XGBoost is widely used in competitions and real-world applications.
· Extra Trees Classifier
Extra Trees (Extremely Randomized Trees) is an ensemble learning algorithm similar to Random Forest but differs in the way trees are constructed. It randomly selects thresholds for splitting features, making it computationally faster and more robust to overfitting on noisy data.

VI. SOFTWARE REQUIREMENTS

· Coding Language: Python

· Libraries: Pandas, NumPy
· Tools: Matplotlib, Seaborn, Plotly
VII. HARDWARE  REQUIREMENTS

· Processor : i5 or Greater
· RAM : 8gb
· Storage : 5gb free disc space
VIII. OUTPUT

The Following Results have been obtained from the evaluation of the five algorithms on the test data.
	Algorithm
	Accuracy

	Extra Tree Classifier 
	97.5%

	Ada Boost Classifier 
	96.6%

	Cat Boost
	96.6%

	Gradient Boosting Classifier
	95.8%

	Stochastic Gradient Boosting
	95.8%

	Random Forest Classifier
	95%

	Decision Tree Classifier 
	94.1%

	XG Boost
	94.1%

	KNN
	70%


IX. CONCLUSION

The objective is to leverage machine learning techniques to accurately predict Chronic Kidney Disease (CKD). By thoroughly analyzing the dataset and applying effective preprocessing methods, critical predictors of CKD are identified. Utilizing multiple machine learning algorithms allows for a comprehensive comparison to determine the most efficient model in terms of accuracy, interpretability, and robustness.
The outcomes have the potential to integrate into clinical workflows, supporting healthcare professionals in early diagnosis, personalized treatment, and resource optimization, ultimately reducing the impact of CKD on individuals and healthcare systems.
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Fig: Histograms of all the indices in the data





Fig: Distribution of Categorical Features in the Dataset





Fig: Heat map of the dataset
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