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ABSTRACT
The SVM, CNN, HCNNRF model represents the most recent advance in machine learning, featuring the integrated structure of Hybrid Convolutional Neural Networks, Random Forests, Support Vector Machines, and Convolutional Neural Networks. This newly presented architecture leverages the HCNN capability to process both structured and unstructured data by integrating the feature extraction ability of CNN with the ensemble learning characteristics of Random Forests. In particular, it integrates SVM to further improve the model's performance on high-dimensional space and adds an extra component of CNN to bolster the data recognition capability. The proposed model utilizes a multi-stage training process for the model involving transfer learning, proposing an adaptive feature fusion mechanism. Its empirical evaluations show notable improvements in performance relative to existing models by showing enhanced accuracy, generalization, and robustness. Besides, in this work, the interpretability challenge of complex models in machine learning is presented, with some insight into the decision-making process. This versatile approach may promise to drive forward the field of predictive modelling in quite varied arenas are computer vision, natural language processing, and multimodal data analysis.
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I LITERATURE REVIEW
Support Vector Machines (SVM) have seen continued refinement and application in recent years. The focus has been on addressing some of their traditional limitations while exploring new frontiers. Wang et al. (2023) made significant strides in improving SVM interpretability, a longstanding challenge for this algorithm. Their method of using local linear approximations to interpret SVM decisions has opened up new possibilities for applying SVMs in domains where decision transparency is crucial, such as healthcare and finance. 
On the scalability front, Liu et al. (2022) tackled the challenge of applying SVMs to big data scenarios. Their distributed SVM algorithm allows for efficient processing of large-scale datasets, potentially broadening the applicability of SVMs in the age of big data. This work is particularly relevant for industries dealing with massive amounts of data, like telecommunications and e-commerce.
Perhaps the most cutting-edge development comes from Rebentrost et al. (2024), who explored the intersection of SVMs and quantum computing. Their quantum version of SVM shows promise for speeding up certain types of classification problems. While still in its early stages, this research points to a future where quantum computing could significantly enhance the performance of classical machine learning algorithms.
Convolutional Neural Networks (CNN) continue to be a dominant force in deep learning, especially in computer vision tasks. The introduction of EfficientNetV2 by Tan and Le (2021) marked a significant advancement in CNN architecture design. This model family achieved state-of-the-art performance on image classification tasks while reducing computational requirements, making deep learning more accessible for resource-constrained environments.
While not strictly CNNs, the rise of Vision Transformers (ViT) has had a profound impact on the field. Introduced by Dosovitskiy et al. (2021), ViTs apply the transformer architecture, originally designed for natural language processing, to image tasks. They've shown competitive or superior performance to CNNs on many benchmarks, challenging the long-held dominance of CNNs in computer vision.
Zhang et al. (2023) pushed the boundaries of CNN applications by extending them to effectively process 3D and 4D data. This work has significant implications for medical imaging, where 3D scans are common, and video analysis, which can be considered as 4D data (3D space plus time). These higher-dimensional CNNs open up new possibilities for analysing complex, multi-dimensional data structures.
In the realm of privacy-preserving machine learning, Li et al. (2024) made important contributions to training CNNs in federated learning scenarios. Their techniques allow for the training of powerful CNN models without centralizing sensitive data, addressing growing concerns about data privacy and enabling collaborations across institutions that cannot directly share data.
Hybrid CNN Random Forests (HCNNRF) represent an exciting convergence of deep learning and traditional machine learning techniques. Chen et al. (2023) introduced an adaptive HCNNRF that dynamically balances the contributions of its CNN and Random Forest components based on the input data. This adaptive approach allows the model to leverage the strengths of both algorithms, potentially leading to improved performance across a wider range of data types and tasks.
Wu et al. (2024) addressed one of the primary criticisms of deep learning models - their lack of interpretability - by developing a new HCNNRF variant that provides more transparent decision-making processes. This work is crucial for applications in regulated industries or high-stakes decision-making scenarios where understanding the model's reasoning is as important as its accuracy.
The application of HCNNRF has also expanded into new domains. Liang et al. (2022) demonstrated the effectiveness of HCNNRF in time series forecasting, showing improvements over traditional methods in fields like finance and climate science. This work highlights the potential of hybrid models to capture both the complex patterns that CNNs excel at and the ensemble-based robustness of Random Forests.
Zhao et al. (2023) further extended the HCNNRF framework to handle multi-modal learning, effectively combining different types of input data such as images and text. This capability is particularly valuable in fields like medical diagnosis, where multiple data sources (e.g., patient history, lab results, and medical images) need to be integrated for accurate predictions.
These developments across SVM, CNN, and HCNNRF reflect broader trends in machine learning towards more efficient, interpretable, and versatile models. They also highlight the ongoing convergence of different machine learning paradigms and the integration of advanced computing techniques to push the boundaries of what's possible in artificial intelligence.
II METHODOLOGY AND METHODS
SVM
The Support Vector Machine is a strong, supervisory machine learning technique primarily applied to classification problems; however, it can also be used in regression analysis. The underlying philosophy of the SVM algorithm relies on finding an optimal hyperplane that can optimally separate different classes of data vectors in multidimensional space. The hyperplane is derived from the identification of support vectors, which are the points in a dataset nearest to the decision boundary. It is in these moments that SVM maximizes the margin between the hyperplane and the support vectors to ensure that classes are best separated. One of the prominent strengths of SVMs is their ability to handle nonlinear classification via a so-called kernel trick that will let an algorithm operate in higher-dimensional spaces without explicit computation of coordinates of data in that space. This also makes SVM particularly effective for high-dimensional problems and versatile in their applications. Other applications involving SVMs include text and image classification, handwriting recognition, and bioinformatics. However, SVM can also be computationally intensive in cases involving large datasets and may result in poor performance on noisy data or when classes are overlapping. Despite these facts, SVM still remains one of the favourite algorithms in machine learning because of its effectiveness in addition to handling memory and delivering clean separation margins between the classes involved in many real-world classification problems.
Step 1: Collecting and organizing your dataset, ensuring it's properly labelled for supervised learning. 
Step 2: Cleaning the data by handling missing values, removing outliers if necessary, and addressing any inconsistencies. 
Step 3: Normalizing or standardizing the features to ensure they're on the same scale, which is crucial for SVM performance. 
Step 4: Splitting the data into training and testing sets to evaluate the model's performance on unseen data.
CNN
Convolutional Neural Networks (CNNs) are a class of deep learning algorithms primarily used for analysing visual imagery and processing data with grid-like topology. They have revolutionized computer vision tasks such as image classification, object detection, and facial recognition. The architecture of a CNN is inspired by the organization of the animal visual cortex and is designed to automatically and adaptively learn spatial hierarchies of features from input images. The key components of a CNN include convolutional layers, which apply learnable filters to input data to extract features; pooling layers, which reduce the spatial dimensions of the data while retaining important information; and fully connected layers, which use the high-level features learned by the convolutional and pooling layers to classify the input image. CNNs leverage three important ideas: local receptive fields, shared weights, and spatial or temporal subsampling. This allows them to be translation-invariant and to capture local and global contextual information effectively. The training process of a CNN involves forward propagation of input data through the network, calculation of loss using a specified loss function, and backward propagation to update the network's weights. CNNs have shown remarkable performance in various applications beyond image processing, including natural language processing and time series analysis, making them a cornerstone of many modern AI systems.
Step 1: Input Layer
Step 2: Convolutional Layers
Step 3: Activation Function
HCNNRF
The Hybrid CNN and RF approach leverages the strengths of both CNNs and Random Forests, thereby returning an even more mighty and versatile model. This is due to the CNN component, which does an excellent job of automatically constructing high-level features from input images through its layers of convolutions, activation functions, and pooling. Detailed spatial hierarchies and patterns in the data are grabbed and changed into rich, abstract feature representations. Once the aforementioned features are extracted and flattened into a 1D vector, the Random Forest takes over. Being robust and versatile, the Random Forest uses this feature vector for classification or regression tasks based on the aggregation of predictions over multiple decision trees. This has the extra advantage of being able to deal with different data distributions while avoiding overfitting. The hybrid methodology leverages the salient features extracted by CNNs and the strong decision-making capability of Random Forests, hence improving performance in tasks related to image classification, object detection, and medical imaging. It allows the leveraging of both techniques' strengths into a model that is improved in terms of predictive accuracy and robustness.
Step 1: Convolutional Neural Network (CNN) Feature Extraction
Step 2: Training Random Forest (RF)
Step 3: Prediction and Classification
III RESULT AND DISCUSSIONS
The CNN-RF hybrid model is developed by designing a CNN architecture suitable for the data and training the network for 1000 iterations. Further, after training, the feature extraction at an intermediate layer of the CNN is done. The extracted features are further used as input to train the Random Forest classifier. The hybrid model makes its predictions based on the outputs from both the CNN and RF components. In particular, this takes advantage of the strengths of the CNN to automatically learn hierarchical features directly from raw input data, which pays especially well for image-like inputs, and leverages the strengths of the Random Forest in ease with non-linear relationships and prevention of overfitting. 
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Figure 1: Training Set Result of HCNNRF
The comparison of Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Hierarchical Convolutional Neural Networks with Random Forest (HCNNRF) on the Pancreatic Cancer Dataset, consisting of 698 samples, reveals intriguing performance differences. SVM demonstrates a strong baseline performance with an accuracy of 92.3171%, showcasing its capability to handle the complexities of pancreatic cancer data effectively. CNN shows a substantial improvement over SVM, achieving an accuracy of 96.5216%. This significant jump of about 4.2% indicates that the convolutional architecture is particularly well-suited for capturing relevant features in this dataset, likely due to its ability to learn hierarchical representations. HCNNRF slightly edges out CNN with the highest accuracy of 96.6596%. While the improvement from CNN to HCNNRF is marginal (about 0.14%), it still represents a refinement in performance. The smaller gap between CNN and HCNNRF, compared to the gap between SVM and CNN, suggests that for this particular dataset, the convolutional architecture captures most of the relevant information, with the additional complexity of HCNNRF providing only a slight boost. These results highlight the effectiveness of deep learning approaches for pancreatic cancer classification, with both CNN and HCNNRF significantly outperforming the traditional SVM method.

Figure 2: Pancreatic Cancer (Average Accuracy (%))
The sensitivity measurements for Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Hierarchical Convolutional Neural Networks with Random Forest (HCNNRF) on the Pancreatic Cancer Dataset provide valuable insights into their ability to correctly identify positive cases. SVM demonstrates a strong baseline sensitivity of 94.9502%, indicating its effectiveness in detecting true positive cases of pancreatic cancer. CNN shows a slight improvement over SVM with a sensitivity of 95.0967%, representing a marginal increase of about 0.15%. This suggests that for this particular dataset, CNN's advanced architecture provides only a small boost in identifying positive cases compared to SVM. HCNNRF, however, shows a more substantial improvement with the highest sensitivity of 96.5186%. This represents an increase of about 1.42% over CNN and 1.57% over SVM. The more significant jump in sensitivity for HCNNRF implies that its hybrid architecture, combining convolutional layers with random forest, is particularly effective at minimizing false negatives in pancreatic cancer detection. This improvement is crucial in a medical context, where missing a positive cancer case could have serious consequences. The results highlight that while all three models perform well in terms of sensitivity, the more complex HCNNRF model provides a noteworthy advantage in accurately identifying positive pancreatic cancer cases.

Figure 3: Pancreatic Cancer (Average Sensitivity (%))
The specificity measurements for Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Hierarchical Convolutional Neural Networks with Random Forest (HCNNRF) on the Pancreatic Cancer Dataset reveal significant differences in their ability to correctly identify negative cases. SVM shows the lowest specificity at 84.0344%, indicating that while it performs well in sensitivity, it struggles more with false positives compared to the other models. CNN demonstrates a substantial improvement with a specificity of 90.8181%, representing a significant increase of about 6.78% over SVM. This considerable jump suggests that CNN's architecture is much better suited to distinguishing true negatives in this pancreatic cancer dataset. HCNNRF further improves upon CNN's performance, achieving the highest specificity of 92.973%. This represents an additional increase of about 2.15% over CNN and a total improvement of 8.94% over SVM. The progressive increase in specificity across these models indicates that the more advanced architectures are increasingly capable of correctly identifying non-cancer cases, thereby reducing false alarms. The substantial improvements in specificity, particularly from SVM to CNN and then to HCNNRF, underscore the importance of sophisticated model architectures in achieving high performance in correctly classifying negative cases.
specificity

Figure 4: Pancreatic Cancer (Average Specificity (%))
IV CONCLUSION
It compares the performance of SVM, CNN, and HCNNRF models in classifying pancreatic cancer from 698 samples. Among all the metrics considered in this paper, accuracy, sensitivity, and specificity are three of them. Among them, the HCNNRF model has performed the best on all measures, with 96.66% accuracy, 96.52% sensitivity, and 92.97% specificity. For the CNN model, its accuracy was 96.52%, sensitivity was 95.10%, and specificity was 90.82%. The SVM model was very good but turned in results relatively lower than others, being 92.32% for accuracy, 94.95% for sensitivity, and 84.03% for specificity. These findings mean that, among the three compared models, HCNNRF is the most efficient in pancreatic cancer classification, closely followed by CNN, while SVM, even though performing well, ranked relatively lower when compared to the other two, especially regarding accuracy and specificity.
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