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ABSTRACT: 
This study examines the displacement data and structural forces of 16 models with varying diagonal bracing configurations in multi-story buildings. The analysis reveals that horizontal displacements (X and Z) significantly influence the resultant displacement, whereas vertical displacements (Y) remain relatively constant and have a minor impact. Models with higher horizontal displacements exhibit greater resultant displacements, underscoring the correlation between these parameters. Structural forces and moments vary across models, with the highest values observed in Model-15, featuring robust bracing in a five-story building, indicating enhanced stability against lateral forces. Conversely, the minimum force values are found in Model-3, characterized by less extensive bracing in a two-story building, highlighting the comparatively lower resistance to structural forces. The study underscores the critical role of diagonal bracing configurations in distributing forces effectively and mitigating displacement. Proper placement of diagonal bracing significantly enhances the structural integrity, stability, and resilience of buildings, particularly against lateral loads. These findings emphasize the importance of optimizing bracing configurations in building designs to ensure safety and performance in multi-story structures. The insights gained from this analysis are crucial for structural engineers aiming to improve building designs and enhance resistance to external forces.
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	In recent years, there has been a notable shift in the complexity of residential and commercial structures compared to those built a few decades ago. Traditionally, these structures were primarily rectangular in shape, adhering to conventional lateral load paths. This simplicity facilitated straightforward structural design and analysis, ensuring that buildings could reliably withstand lateral forces such as wind and seismic loads. The rectangular geometry allowed engineers to apply well-established principles of lateral load distribution, leading to predictable and manageable stress and deformation patterns within the structure.
However, advances in technology and architectural design have ushered in an era of more complex structural forms. Modern residential and commercial buildings often feature innovative and unconventional shapes, incorporating multiple irregularities that significantly complicate their structural behavior. These irregularities can include nonparallel systems, where structural elements are not aligned in a uniform grid, creating challenges in predicting load paths and stress distributions. Diaphragm discontinuities, such as openings or changes in the diaphragm plane, disrupt the continuity of horizontal load transfer elements, further complicating the structural analysis.
[bookmark: _Toc79000455][bookmark: _Toc168600769]2 LITERATURE REVIEW 
Agarwal, P. et al observed that while damage in the irregularity after a lateral loading event has been noted for over a hundred years now, it is only in the last twenty years that research has been done to try to better understand and determine the magnitude of forces in the irregularity. Since it is difficult to determine analytically the magnitudes of the forces, as explained previously, models have been developed and tested either in wind tunnels or on shake tables to investigate the forces in irregularity structures. 
Ahmad J. Durrani et al.investigated the behavior of engineered light-frame wood construction under lateral loads. Part of the investigation was to examine diaphragm action with irregularity. A uniformly distributed load was applied to the model through the use of gasbags set along the exterior floor edges. As a part of their investigation, a series of tests were executed, one of which was an ultimate load test. After the ultimate load test was performed, the irregularity of the model was examined. It was found that no visible damage had been done. They concluded that lateral loads could be successfully resisted without continuous end chord if the irregularity of the diaphragm was less than 1.0 meter.
Akshay Nagpur,et al concluded that to have a irregularity in their model less than 1.0 meter was based on a finite element analysis study on openings and offsets in buildings. Their results confirmed some of the data presented in that study. Authors from the Seismological Laboratory of the California Institute of Technology did a case study of damage to 19-story irregular steel moment frame buildings under near-source ground motion. The purpose of his study was to compare the performance of buildings that do not adhere to wind drift limits to those that do, by comparing 3 19-story irregular steel moment-frame buildings. Two of the buildings had irregularity irregularities, while the third had a plan torsional irregularity. Authors used the UBC97 and assumed that each structure was located in a Seismic Zone 4 with soil Type, also selected three different sets of three component ground motion records so as to compare results. He concluded that none of the buildings, whether they adhered to wind drift limits or not, would satisfy the life safety performance level for existing buildings as given by FEMA-356.
Amin Alavi, et al. concluded that the results from his investigation were similar to results found in structures after the 1994 Northridge earthquake. While the stress concentration in irregularity was not a part of his primary investigation, he did comment on it. Authors concluded that the specific stress concentrations were averaged out over a large area near the irregularity. The results were also inconclusive in regards to an increase in stress concentration in the irregularity since a stress concentration increase in the irregularity was only noticed in one of the two models containing irregularity. A more rigorous and detailed analysis is required to conclusively rule out the incidence of stress concentration at the irregularity. 

3. METHODOLOGY
The chapter outlines a method for analyzing buildings with identified irregularities using the STAAD-PRO software. This analysis focuses on various configurations of diagonal bracing to enhance structural stability against seismic forces. The models are categorized based on the number of floors and the placement of diagonal bracing.
1. EQ-2-Diagonal bracing at front: This model features two floors with diagonal braces only on the front facade to provide lateral stability.
2. EQ-2-Diagonal bracing at front and side: Extending the previous model, braces are added to the front and side of a two-story building for improved resistance against lateral forces from multiple directions.
3. EQ-2-Diagonal bracing at front, side, and back: This model includes diagonal bracing on the front, side, and back of a two-story building, offering comprehensive lateral support.
4. EQ-2-Diagonal bracing at side: Diagonal braces are placed only on the side of the two-story building, targeting lateral stability from side forces.
5. EQ-3-Diagonal bracing at front: Similar to the first model, but with three floors, this setup provides front-facing bracing for increased height.
6. EQ-3-Diagonal bracing at front and side: Braces are added to the front and side of a three-story building for multidirectional stability.
7. EQ-3-Diagonal bracing at front, side, and back: This model offers three-directional bracing for a three-story building, ensuring robust lateral support.
8. EQ-3-Diagonal bracing at side: Diagonal braces are placed only on the side of the three-story building to counteract side forces.
9. EQ-4-Diagonal bracing at front: Four floors are supported with diagonal bracing at the front, aiming for front-facing lateral stability.
10. EQ-4-Diagonal bracing at front and side: This model includes front and side bracing for a four-story building to handle lateral forces from multiple directions.
11. EQ-4-Diagonal bracing at front, side, and back: Providing comprehensive support, this model features diagonal bracing on the front, side, and back of a four-story building.
12. EQ-4-Diagonal bracing at side: Diagonal braces are added to the side of the four-story building, focusing on side stability.
13. EQ-5-Diagonal bracing at front: Diagonal braces are installed at the front of a five-story building to enhance its front-facing lateral stability.
14. EQ-5-Diagonal bracing at front and side: This model incorporates diagonal bracing at both the front and side of a five-story building for improved multidirectional support.
15. EQ-5-Diagonal bracing at front, side, and back: For maximum stability, this model features diagonal bracing on the front, side, and back of a five-story building.
16. EQ-5-Diagonal bracing at side: Diagonal braces are placed on the side of the five-story building, targeting side lateral stability.
Each configuration aims to improve the building's resilience against seismic forces by strategically placing diagonal bracing in various locations and combinations, thus addressing the structural needs dictated by building height and expected stress points.
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	[bookmark: _Toc168600778]Figure 1:Geometry of the model
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	[bookmark: _Toc168600779]Figure 2:Supports of the model
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	[bookmark: _Toc168600780]Figure 3:Properties Assigned to the model



[bookmark: _Toc168600771]4. RESULTS & DISCUSSIONS
The results chapter of this study presents an in-depth analysis of various structural models featuring diagonal bracing configurations. Spanning from two to five stories, each model is meticulously examined for its effectiveness in providing lateral stability against different directions of forces. By evaluating the performance of these models, valuable insights into the optimal placement and extent of diagonal bracing for enhancing structural integrity are gained, contributing significantly to the field of architectural engineering and building design.
	

	[bookmark: _Toc168600787]Figure 4:Horizontal Displacement (X) for all the models


The maximum horizontal measurement, found in Model-13 (EQ-5-Diagonal bracing at front) and Model-14 (EQ-5-Diagonal bracing at front and side), suggests that these configurations offer the highest level of lateral stability among the presented models. These models are designed to withstand lateral forces effectively, making them suitable for buildings requiring robust stability in multiple directions.
	

	[bookmark: _Toc168600788]Figure 5:Horizontal Displacement (Z) for all the models 


Model-16 (EQ-5-Diagonal bracing at side) has the highest value of 42.213. This indicates that this model, which focuses on diagonal bracing on the side of a five-story building, provides the maximum lateral stability among all the models listed. Model-15 (EQ-5-Diagonal bracing at front, side, and back) follows closely with a value of 38.846. This model, with diagonal bracing on the front, side, and back of a five-story building, also offers very strong lateral stability.
	

	[bookmark: _Toc168600794]Figure 6:Reaction Moment (Mx) for all the models 


In terms of horizontal moments (Mx), Model-15 exhibits the highest recorded value at 97.151 kNm, indicating the maximum resistance against horizontal forces among all the models examined. This suggests that the configuration of diagonal bracing at the front, side, and back of the five-story building in Model-15 effectively distributes and counteracts lateral forces, resulting in superior stability.
	

	[bookmark: _Toc168600797]Figure 7:Beam Forces (Fx) for all the models 


The maximum and minimum values of Fx, which represent the force acting along the x-axis, provide insights into the structural behavior of the different building models under consideration. The maximum value of 1416.33 kN, observed in Model-15, indicates the highest magnitude of force experienced in any direction among all the models. This suggests that Model-15 may be subject to significant external forces or loading conditions along the x-axis, potentially due to factors such as wind or seismic activity.
	

	[bookmark: _Toc168600802]Figure 8:Beam Moment (Mz) for all the models 



The maximum and minimum values of Mz represent the moments about the z-axis (usually considered the vertical axis) experienced by the different building models under analysis. The maximum Mz value, 125.77 kNm, occurs in Model-15, suggesting that this particular building configuration undergoes the highest torsional force among all the models evaluated.
[bookmark: _Toc168600773]5. CONCLUSIONS
In the conclusion chapter, we delve into the comprehensive array of structural models aimed at enhancing lateral stability in multi-story buildings. By examining various configurations, from basic front-facing bracing to intricate designs encompassing front, side, and back bracing, we gain insight into the diverse strategies employed to mitigate lateral forces. This exploration underscores the importance of tailored approaches in ensuring the structural integrity and safety of buildings across different heights and orientations. Through this analysis, we glean valuable insights into the optimal balance between structural robustness and architectural considerations, paving the way for advancements in building design and construction practices.

[bookmark: _Toc79000461][bookmark: _Toc168600775]REFERENCES

1. Agarwal, P. and Shrikhande, M., Earthquake Resistant Design of Structures, Prentice hall of India Pvt. Ltd.,2006.
2. Amin Alavi, P. Srinivasa Rao, Effect of Plan Irregular RC Buildings in High Sesimic Zones, Australian Journal of Basic and Applied Sciences, 7(13) November 2013, Pages: 1-6
3. Anil K. Chopra and Chatpan Chintanapakdee “Seismic Response of Vertically Irregular Frames: Response History and Modal Pushover Analysis” Vol. 130, No. 8, August 1, 2004. ©ASCE,ISSN 0733-9445/2004/8-1177–1185
4. Devesh P. Soni and Bharat B. Mistry “Qualitative Review Of Seismic Response Of Vertically Irregular Building Frames”, Vol. 43, No. 4, December 2006, pp. 121-132
5. Dhiman Basu and Sudhir K. Jain “Seismic Analysis of Asymmetric Buildings with Flexible Floor Diaphragms”, Vol. 130, No. 8, August 1, 2004. ©ASCE, ISSN 0733-9445/2004/8-1169–1176
6. Divyashree . M, Gopi siddappa, Seismic Behaviour Of RC Buildings With Irregularitys And Strengthening, IOSR Journal Of Mechanical And Civil Engineering., pg – 63 to 69.
7. IS- 1893- Part I: 2002, Criteria for Earthquake Resistant Design of Structures,Bureau of Indian Standards, New Delhi.
8. IS: 456-2000, “Code of Practice for Plain and Reinforced Concrete”, Bureau of Indian Standards, New Delhi, India.
9. IS:1893-2002(Part 1) Criteria for Earthquake Resistant Design of Structures, part 1-General provisions and buildings, fifth revision, Bureau of Indian Standards, New Delhi, India
10. Kazi Muhammed mustaqeem and md mansoor ahmad (2016) “impact of intermittent diaphragm and Irregularitys on seismic response of multistoried RC framed buildings” international journal of engineering research and technology. ISSN: 2278-0181, vol. 5 issue 07, July-2016
[bookmark: _GoBack]




Moment	Mx kNm	Model-1	Model-2	Model-3	Model-4	Model-5	Model-6	Model-7	Model-8	Model-9	Model-10	Model-11	Model-12	Model-13	Model-14	Model-15	Model-16	20.946000000000002	36.243000000000002	38.58	33.255000000000003	33.356999999999999	51.509	55.582999999999998	46.805999999999997	50.009	71.861999999999995	78.253	64.873000000000005	74.998999999999995	102.393	112.25700000000001	91.974999999999994	All models


Reactions (kN)




 Fx kN

Moment	Fx kN	Model-1	Model-2	Model-3	Model-4	Model-5	Model-6	Model-7	Model-8	Model-9	Model-10	Model-11	Model-12	Model-13	Model-14	Model-15	Model-16	844.92499999999995	844.90800000000002	844.59400000000005	844.92499999999995	844.92499999999995	844.90800000000002	878.83500000000004	844.92499999999995	951.96400000000006	1021.981	1088.825	951.96400000000006	1211.509	1301.4010000000001	1416.3340000000001	1211.51	All models


Beam Forces (kN)




 Mz

Moment	Mz kNm	Model-1	Model-2	Model-3	Model-4	Model-5	Model-6	Model-7	Model-8	Model-9	Model-10	Model-11	Model-12	Model-13	Model-14	Model-15	Model-16	33.255000000000003	36.243000000000002	42.686	20.946000000000002	46.805999999999997	51.509	61.859000000000002	33.353000000000002	64.873000000000005	71.861999999999995	87.423000000000002	50.009	91.974999999999994	102.393	125.77	74.998999999999995	All models


Beam Moment (kNm)




Horizontal	X mm	Model-1	Model-2	Model-3	Model-4	Model-5	Model-6	Model-7	Model-8	Model-9	Model-10	Model-11	Model-12	Model-13	Model-14	Model-15	Model-16	11.734	11.372999999999999	7.69	10.568	18.766999999999999	18.161999999999999	12.273	16.843	28.146000000000001	27.215	18.384	25.210999999999999	42.213000000000001	40.792999999999999	27.55	37.761000000000003	All models


Displacement (X)




Horizontal	Z mm	Model-1	Model-2	Model-3	Model-4	Model-5	Model-6	Model-7	Model-8	Model-9	Model-10	Model-11	Model-12	Model-13	Model-14	Model-15	Model-16	10.568	11.372999999999999	10.798	11.734	16.843	18.161999999999999	17.271000000000001	18.766999999999999	25.210999999999999	27.215	25.901	28.146000000000001	37.761000000000003	40.792999999999999	38.845999999999997	42.213000000000001	All models


Displacement (Z)
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