Enhanced Malware Detection through Intelligent Machine Learning Algorithms 
Dr S Athinarayanan1, K Madhuri2,  A.Lal Charan3, SM.Akheel Peeran4 
1 Associate Professor, 
2,3,4 B.Tech CSE Students 
Department of CSE, School of Computing
Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology Deemed to be University. Avadi, Chennai. 

    Abstract—The increase of malware that are exploiting the Internet daily has become a serious threat. The manual heuristics inspection of malware analysis is no longer considered effective and    efficient compared against the high spreading rate of malware. Hence, automated behavior-based malware detection using machine learning techniques is considered a profound solution. The behavior of each malware on an emulated (sandbox) environment will be automatically analyzed and will generate behavior reports. These reports will be preprocessed into sparse vector models for further machine learning (classification). The classifiers used in this research are k-Nearest Neighbors (kNN), Naïve Bayes, J48 Decision Tree, Support Vector Machine (SVM), and Multilayer Perceptron Neural Network (MLP). Based on the analysis of the tests and experimental results of all the 5 classifiers, the overall best performance was achieved by J48 decision tree with a recall of 95.9%, a false positive rate of 2.4%, a precision of 97.3%, and an accuracy of 96.8%. In summary, it can be concluded that a proof-concept based on automatic behavior- based malware analysis and the use of machine learning techniques could detect malware quite effectively and efficiently.
Keywords—malware analysis, dynamic analysis, behavior analysis, data mining, machine learning, classification, malware detection

I. INTRODUCTION
The problem to be examined involves the high spreading rate of computer malware (viruses, worms, Trojan horses, rootkits, botnets, backdoors, and other malicious software) and conventional signature matching-based antivirus systems fail to detect polymorphic and new, previously unseen malicious executables. Malware are spreading all over the world through the Internet and are increasing day by day, thus becoming a serious threat. The manual heuristic inspection of static malware analysis is no longer considered effective and efficient compared against the high spreading rate of malware.
Nevertheless, researches are trying to develop various alternative approaches in combating and detecting malware. One proposed approach (solution) is by using automatic dynamic (behavior) malware analysis combined with data mining tasks.

II. RELATED WORKS
Trinius et al. [2] introduced a new representation fo monitored behavior of malicious software called Malware Instruction Set (MIST). The representation is optimized for effective and efficient analysis of behavior using data mining and machine learning techniques. It can be obtained automatically during analysis of malware with a behavior monitoring tool or by converting existing behavior reports.
Rieck et al. [3] aim to exploit specific shared patterns for classification of malware. The authors said that variants of malware families share typical behavioral patterns reflecting its origin and purpose. Their method proceeds in three stages: (a) behavior of collected malware is monitored in a sandbox environment, (b) based on a corpus of malware labeled by an anti-virus scanner a malware behavior classifier is trained using learning techniques and (c) discriminative features of the behavior models are ranked for explanation of classification decisions.
Rieck et al. [4] propose a framework for automatic analysis of malware behavior using machine learning. The framework allows for automatically identifying novel classes of malware with similar behavior (clustering) and assigning unknown malware to these discovered classes (classification).
Christodorescu et al. [5] propose a technique by comparing the execution behavior of a known malware against the execution behaviors of a set of benign programs. The authors mine the malicious behavior present in a known malware that is not present in a set of benign programs. The output of the authors’ algorithm can be used by malware detectors to detect malware variants.
III. METHODOLOGY
The research methodology process will be explained in this section. The general overview of the research methodology is shown in Fig. 1.

A. Data Acquisition and Storage
The data set consists of malware data set and benign instance data set. Both malware and benign instance data sets.
[image: ][image: ]
Figure 1. General overview of the research methodology.


B. Automatic Behavior Monitoring and Report Generation
The next step is conducting dynamic analysis (behavior monitoring) of both the malware and benign instance data sets. This process is done by submitting each and every sample to a free-online automatic dynamic analysis service: Anubis [6]. Binary submission and execution of Anubis result in the generation of a report file. In this research, all the generated report files were downloaded in XML format.
C. Data Preprocessing
The next step is conducting data preprocessing. The data preprocessing steps of this research are described as follows:
1. All the XML report files were parsed to select the most relevant and important attribute values (feature selection).
2. A term dictionary was created, which contains all the attribute values that were previously parsed and selected.
3. Each XML report file was compared against the term dictionary by counting the existence (or non-existence) of each term word in the term dictionary based on binary weight and term frequency weight.
4. Sparse vector models were created for each XML report file and Attribute-Relation File Format (ARFF) files were created.
D. Learning and Classification
The next step is to conduct learning and classification based on the ARFF files. Machine learning techniques were applied for the learning and classification of the ARFF files.

IV. TESTS AND EXPERIMENTAL RESULTS
The tests and experiments were conducted using Weka [1]
3.6.2 for Windows OS version. These tests and experiments were conducted based upon four data sets: 1. Binary-weight vector model without feature selection.
2. Term frequency-weight vector model without feature selection.
3. Binary-weight vector model with feature selection.
4. Term	frequency-weight vector model with feature selection.

Each data set was applied to 5 different classifier algorithms, which were k-Nearest Neighbor, Naïve Bayes, Support Vector Machine (SVM), J48 decision tree, and Multilayer Perceptron (MLP) neural network.
A. Performance Metrics
This research statistically measured the performance of the binary classification (malicious or benign) tests that were conducted. The statistical measures include true positive rate (sensitivity, recall, hit rate), false positive rate (fall-out), positive predictive value (precision), and accuracy.
B. Without Feature Selection
From Table. I, Tab. II and Table III, performance results were best achieved by J48 on both binary-weight and term frequency-weight data sets, although there were slightly different performance between kNN, SVM, and J48. In addition, Naïve Bayes achieved the poorest performance on both binary- weight and term frequency-weight data sets.

TABLE I. PERFORMANCE METRICS RESULTS (BINARY, NO FEATURE SELECTION)


	Classifier
	TPR
	FPR
	PPV
	ACC

	k-NN
	81.7%
	8.1%
	91.8%
	86.5%

	Naïve Bayes
	58.1%
	12.8%
	93.2%
	65.4%

	SVM
	90.4%
	8.4%
	90.4%
	91.0%

	J48
	90.9%
	3.8%
	95.9%
	93.6%




TABLE II. PERFORMANCE METRICS RESULTS (TERM FREQUENCY, NO FEATURE SELECTION)
	Classifier
	TPR
	FPR
	PPV
	ACC

	k-NN
	86.8%
	8.8%
	90.4%
	89.1%

	Naïve Bayes
	56.8%
	22.2%
	86.3%
	62.8%

	SVM
	90.5%
	7.3%
	91.8%
	91.7%

	J48
	95.9%
	2.4%
	97.3%
	96.8%




5


TABLE III. PERFORMANCE METRICS RESULTS (BINARY, FEATURE SELECTION)

	Classifier
	TPR
	FPR
	PPV
	ACC

	k-NN
	94.3%
	8.1%
	90.4%
	92.9%

	Naïve Bayes
	94.2%
	9.2%
	89.0%
	92.3%

	SVM
	94.3%
	8.1%
	90.4%
	92.9%

	J48
	94.2%
	9.2%
	89.0%
	92.3%



C. With Feature Selection
Based on the tests and experiments conducted for feature selection using Correlation-based Feature Selection (CFS) Subset Evaluator for the Best First search algorithm


V. CONCLUSION
In conclusion, it can be stated that this research has developed a proof-of-concept of an alternative malware detection method. Feature selection was presented in this research using Best First search algorithm. By performing feature selection or feature reduction, the features were reduced drastically. Hence, the time taken to train and build the model becomes shorter at the cost of the performance decreases slightly. In some cases, the performance can also increase slightly.The performance comparison of 5 different classifiers was also presented. The overall best performance was achieved by J48 using the term frequency-weight without feature selection data set, with a recall (true positive rate) of 95.9%, a false positive rate of 2.4%, a precision (positive predictive value) of 97.3%, and an accuracy of 96.8%. The analysis of the tests and experimental results concluded that this proof-of-concept is quite effective and efficient in detecting malware.

REFERENCES
[1] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten, “The WEKA Data Mining Software: An Update”, SIGKDD Explorations, Volume 11, Issue 1, 2019.
[2] K. Rieck, T. Holz, C. Willems, P. Duessel, and P. Laskov, “Learning and for Behavior-Based Analysis”, 2019. 
[4] Classification of Malware Behavior”, DIMVA, LNCS 5137, pp.108–125, Berlin Heidelberg: Springer-Verlag, 2018.
[5] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic Analysis of Malware Behavior using Machine Learning”, 2019.
[6] M. Christodorescu, S. Jha, and C. Kruegel, “Mining Specifications of Malicious Behavior”, Proceedings of the 6th joint meeting of the ESEC and the ACM SIGSOFT Symposium on the FSE, September 3–7, Dubrovnik, Croatia, ACM, 2017.
[7] [bookmark: _GoBack]U. Bayer, C. Kruegel, and E. Kirda, “TTAnalyze: A Tool for Analyzing Malware”, 15th Annual Conference of the European Institute for Computer Antivirus Research,2021.







image1.jpeg
Automati
Data Acq o o Report
and Storage it Genera
Computer security — XML format
group or commurity Sandbx environment
v iotogt Anubis Sandbox
‘AP hooling
System call
onitoring
v
Data Learning and Rewilte Anaiysl
Preprocessing | Classification [T | pocumnetation
XML file parsing Aoty i e Analysts oftests and
Rechniques and tool experiments
Feature seloction
Parammeter tuning
Vector mode creation
Experiments and tests

Data Mining





image2.png




