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Abstract

Accurate tree enumeration is essential for responsible forest land
diversion in development projects. Conventional manual surveys are
slow, costly, and prone to errors. This paper introduces a cutting-edge
image analytics solution that leverages satellite imagery and aerial
photos to automate tree counting and forest analysis. The primary
objective is to develop a robust system that identifies trees and gives a
count in results. Advanced computer vision algorithms are used and
integrated with machine learning models to detect and analyze the
imagery. YOLOvS is the latest and most advanced object detection
algorithm based on the computer vision process. The YOLOvS is trained
on a custom dataset which is “Forest Trees" available on RoboFlow
which contains more than 3000 total aerial images of forest. This
solution significantly accelerates tree enumeration, eliminating
resource-intensive manual efforts. This project's significance lies in its
contribution to responsible and sustainable land development
practices. By automating tree enumeration, it equips stakeholders with
timely, precise data for informed decisions about land usage,
conservation, and environmental impact assessments. The solution
strikes a balance between development and ecological preservation,
optimizing resource allocation while minimizing environmental impact
in forested regions. This innovative image analytics solution
revolutionizes forest land diversion, enabling efficient and ecologically
conscious decision-making. It addresses the critical need for accurate
tree enumeration in the face of developmental challenges, fostering
responsible land use and environmental stewardship.
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Introduction
When it comes to land development projects that require the diversion of forested areas, it's



imperative to have a precise understanding of the tree population within those regions.
Traditional methods of tree enumeration, such as manual surveys or ground-based
assessments, can be costly, time-consuming, and prone to errors. To overcome these
challenges, there is a need to develop an image analytics solution that automates the tree
enumeration process using satellite imagery or aerial photographs. The proposed solution
should encompass a computer vision algorithm that must be developed to analyze satellite
imagery or aerial photographs accurately. This algorithm should be capable of detecting and
identifying trees within designated forest areas, accounting for variations in tree crown sizes
and environmental conditions to ensure reliable results. Design a system that not only counts
the number of trees in the specified area but also classifies land cover using various
parameters like ideal land and forest land. This detailed information will aid decision-making
during the land diversion process. Implement mechanisms to validate the accuracy of the
image analytics solution. This validation process should involve comparing the results with
ground-truth data obtained through manual surveys or other reliable methods. Aim for a high
level of accuracy while minimizing false positives or false negatives in tree identification and
counting. Develop an efficient and scalable solution capable of processing large volumes of
image data within a reasonable timeframe. Utilize optimization techniques and parallel
processing approaches to ensure timely results, especially for large forest areas or time-
sensitive projects. Provide intuitive visualizations or interactive interfaces for users to explore
and interpret the results easily. This could involve generating maps, reports, or other visual
representations of the tree enumeration data, enhancing stakeholders' understanding of the
information presented. Ensure that the solution adheres to ethical practices, respects privacy
concerns, and minimizes environmental impact. Safeguard sensitive data, secure storage of
images, and ensure compliance with environmental regulations throughout the development
and deployment phases.

In this research endeavor, we have devised a novel approach for comprehensive environmental
analysis, encompassing both tree counting using a UAV (Unnamed Aerial Vehicle) and land
cover classification. Our methodology integrates the YOLOv8 (You Only Look Once Version-8)
object detection algorithm for tree counting and employs advanced machine learning
technigues for land cover classification.

¥ OLOvE represents the latest iteration of the acclaimed real-time object detection and image
segmentation model, leveraging cutting-edge advancements in deep learning and computer
vision to deliver unparalleled performance in terms of both speed and accuracy. By harnessing
the power of YOLOvE, we can accurately quantify tree populations within designated areas,
providing essential data for informed decision-making in land diversion projects. In addition to
tree counting, our research extends to land cover classification, which plays a pivotal role in
environmental assessment and resource management. Through advanced machine learning
algorithms, we aim to classify land cover into distinct categories such as forested areas,
agricultural land, water bodies, and urban settlements. This holistic approach enables us to
gain insights into the spatial distribution of different land cover types, facilitating the
identification of ideal land for conservation, sustainable development, and habitat preservation.

The classification of land cover types is crucial for understanding ecosystem dynamics and
assessing environmental impact. Forested areas contribute to biodiversity conservation,
carbon sequestration, and soil erosion prevention, making them invaluable resources for
ecosystem health and resilience. Similarly, water bodies serve as essential habitats for aguatic
life and play a vital role in regulating local climate patterns and supporting human livelihoods.
By integrating tree counting and land cover classification, our research endeavors to provide a
comprehensive understanding of landscape dynamics and environmental conditions. This
knowledge can inform land use planning, conservation strategies, and policy decisions aimed
at promoting sustainable development and mitigating the adverse effects of deforestation and
habitat loss.



Related Work

In the realm of tree counting, traditional methods like manual surveys have long been
fundamental. These surveys entail field teams physically inspecting designated areas to
manually count trees. While they're deemed accurate, manual surveys are labor-intensive, time-
consuming, and costly. Additionally, they pose risks to surveyors, particularly in challenging
terrains and environments. Early remote sensing techniques relied on satellite imagery and
aerial photographs for tree counting. However, these methods depended on the manual
interpretation of imagery, which could introduce errors. While they provided broader spatial
coverage than manual surveys, they were limited by their reliance on subjective visual
interpretation.

Object detection algorithms, such as Faster R-CNN, YOLO, and SSD, have been adapted for tree
counting tasks. These algorithms leverage deep learning architectures to detect and localize
trees within images. While they offer automation and scalability, they may struggle with
accurately detecting trees in densely vegetated areas or complex backgrounds. Moreover,
various machine learning technigues, including support vector machines (SVMs), random
forests, and convolutional neural networks (CNNs), have been employed for tree counting.
While effective in certain scenarios, machine learning approaches may require extensive
training data and suffer from limited generalizability across different environmental conditions.

Transitioning to land cover classification, supervised classification techniques like maximum
likelihood, support vector machines (SVMs), and random forests have been widely used. These
methods train classifiers on labeled training data to categorize pixels or image segments into
predefined land cover classes. Conversely, unsupervised classification methods, such as K-
means clustering and hierarchical clustering, partition pixels or image segments into clusters
based on spectral similarity, without requiring labeled training data.

Remote sensing data sources, including multispectral and hyperspectral imagery, LIDAR data,
and synthetic aperture radar (SAR) data, have been extensively utilized for land cover
classification. Each data source offers unique spectral and spatial information for
discriminating land cover classes. Feature extraction techniques, such as principal component
analysis (PCA), texture analysis, and vegetation indices (e.g., NDVI), are employed to extract
relevant information from remote sensing data. These features serve as input variables for
classification algorithms, aiding in the discrimination of different land cover classes. Despite
offering valuable insights for land use planning and environmental monitoring, land cover
classification faces challenges related to data complexity, class confusion, and scale
mismatch. Remote sensing data are complex and multi-dimensional, necessitating
sophisticated preprocessing and analysis technigues. Spectral overlap and mixed pixels can
result in misclassification errors, particularly in areas with heterogeneous land cover.
Additionally, the scale of remote sensing data may not align with the scale of land cover
features and processes, leading to uncertainties in classification results.

Methodology
1. Methodology Overview:

The methodology adopted for tree detection using YOLOvB and land cover classification using
U-Net involves leveraging state-of-the-art deep learning models tailored to specific tasks in
image analysis. For tree detection using YOLOvS, the rationale behind selecting this model lies
in its efficiency, speed, and accuracy in detecting objects within images. YOLOvE, short for "You
Only Look Once Version-8," is renowned for its real-time capabilities, making it suitable for
applications where timely detection of objects, such as trees, is crucial. Its single-pass
architecture allows for simultaneous localization and classification of multiple objects in an



image, ensuring robust and efficient tree detection. Additionally, YOLOv8's ability to handle
varying object sizes and backgrounds makes it well-suited for the diverse and complex
environments typically encountered in forestry management and environmental monitoring
tasks.

Figure 1: Methodology Flow Chart

On the other hand, U-Net was chosen for land cover classification due to its effectiveness in
semantic segmentation tasks. U-Net's architecture, featuring a U-shaped design with symmetric
contracting and expanding paths, enables accurate pixel-wise classification of land cover
classes within images. By capturing spatial relationships and contextual information across
different image regions, U-Net facilitates the precise delineation of land cover boundaries and
the identification of distinct land cover types. This makes it particularly suitable for tasks such
as land cover classification, where fine-grained analysis of image content is essential for
accurate mapping and characterization of land cover patterns.

2. Datasets:

For tree detection using the YOLOvB model, we utilize the "Forest Trees" dataset accessible on
RoboFlow. This dataset is meticulously organized into three subsets: training, validation, and
testing. Each subset is meticulously labeled with bounding box annotations for detected trees,
providing essential ground truth data for training and evaluating the YOLOvE model. The
training subset comprises approximately 2528 images, offering a diverse range of tree-rich
environments for model learning. Additionally, the validation subset contains around 495
images, while the testing subset consists of 194 images, providing ample data for assessing
model generalization and performance. To maintain consistency and optimize model training,
all images are resized to dimensions of 640x640 pixels, ensuring uniformity across the dataset
and facilitating efficient processing by the YOLOvE model during inference.



Figure 2: RGB Input images

On the other hand, for land cover classification tasks, we rely on the Land Cover Challenge
dataset, which encompasses satellite imagery captured by DigitalGlobe's satellite at a high
resolution of 50cm per pixel. This dataset comprises 803 RGB images, each with dimensions
of 2448x2448 pixels, providing detailed and comprehensive coverage of the study area.
Moreover, the dataset includes 171 validation images and 172 test images, each paired with
mask images for land cover annotation. These mask images encode seven distinct land cover
classes using color-coding, including urban land, agriculture land, rangeland, forest land, water
bodies, barren land, and unknown areas. Each satellite image is meticulously annotated with
corresponding mask images, enabling supervised learning for land cover classification tasks.
The mask images serve as essential ground truth data for training and evaluating the U-Net
model, facilitating accurate pixel-wise classification of land cover classes within the satellite
imagery. By leveraging these meticulously annotated datasets, we aim to train robust and
accurate models for tree detection and land cover classification, contributing to advancements
in remote sensing applications for forestry management, environmental monitoring, and land
use planning.

3. Model Training:

A. Tree Enumeration: Implementing tree enumeration using the YOLOvB object detection model
involves a comprehensive process of training the model on a custom dataset. Initially, the
creation of a suitable dataset is paramount, whether manually curated or obtained from
platforms like Roboflow. In our case, we acquired the dataset from Roboflow, which comprised
over 3000 images meticulously divided into training, testing, and validation sets. The training
set encompassed approximately 2528 images, with the validation set comprising around 495
images, and the testing set containing 194 images, all uniformly scaled to dimensions of
640x640 pixels.

To proceed, the dataset needs to be well-annotated with bounding boxes and object class
labels. Annotation tools such as VGG Image Annotator or Label Img are commonly employed
for this purpose. Following annotation, the dataset is partitioned into training, validation, and
test sets, ensuring adequate representation for model training and evaluation. In our scenario,
the dataset, consisting of about 3157 annotated records, was meticulously divided into these
sets to facilitate effective model training and evaluation. Next, the environment is set up by
installing YOLOv8 and its dependencies, along with additional libraries like CUDA for GPU
acceleration, if applicable. The choice of GPU for training is determined based on factors such
as dataset size and complexity, often executed on platforms like Google Colab for streamlined
configuration and execution. Furthermore, to ensure consistency and streamlined configuration
for all project activities, a separate virtual environment is established with all necessary
packages and libraries installed.

Subsequently, the training configuration is defined by creating a YAML file (data.yaml) to



specify dataset paths, class names (in this instance, "Tree"), and image augmentations. The
YAML file contains crucial information such as paths for training, testing, and validation
datasets, the number of classes, and their respective names. With the configuration set, the
model training process is initiated by loading the YOLO model from Ultralytics and specifying
hyperparameters like batch size, learning rate, and epochs. Training progress is monitored
meticulously for key metrics such as loss and accuracy to ensure the model's effectiveness
and performance. Finally, after training, the model's accuracy is evaluated by obtaining the best-
performing weights (best.pt) within the run folder, representing the model trained on the
custom dataset. This thorough process ensures that the YOLOv8 model is meticulously trained
and evaluated for tree enumeration, providing accurate and reliable results for practical
applications.
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Figure 3: Trees detected in Image
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Figure 4: Tree Counted in image
B. Land cover classification:

To train a U-Net model for land cover classification, we embark on a comprehensive process
involving several key steps to ensure effective model training and evaluation. Firstly, we begin
with data preparation, ensuring that our dataset comprises 803 satellite images in RGB format,
each with a resolution of 2448x2448 pixels. These images, collected by DigitalGlobe's satellite,
boast a pixel resolution of 50cm. Additionally, our dataset contains 171 validation images and
172 test images, although masks for these images are not provided. Each satellite image is
paired with a mask image, where the mask utilizes color-coding to denote seven distinct land
cover classes: Urban land, Agriculture land, Rangeland, Forest land, Water, Barren land, and
Unknown. Following data preparation, we proceed with dataset annotation, meticulously
creating mask images corresponding to each satellite image. These masks accurately
represent each pixel's land cover class using the prescribed color-coding scheme. The color-
coded annotations ensure precise labeling of each image, facilitating effective model training.

With our annotated dataset in hand, we meticulously split it into training, validation, and test
sets. Approximately 60% of the dataset is allocated for training, with 20% reserved for both
validation and testing. This partitioning strategy ensures a balanced distribution of images
across each land cover class in all sets, enabling robust model training and evaluation. Moving
forward, we configure the U-Net model architecture, a specialized convolutional neural network
(CNN) designed for sermantic segmentation tasks. The model's input shape is defined to match
the dimensions of the satellite images (2448x2448x3 for RGB images), while the output layer
comprises seven channels, corresponding to the seven land cover classes.

Subsequently, we embark on model training, loading the U-Net architecture using TensorFlow or
Keras and initializing it with appropriate parameters. The model is compiled with a suitable
loss function, such as categorical cross-entropy, and an optimizer like Adam or SGD. During
training, we adjust hyperparameters such as batch size, learning rate, and number of epochs as
needed, closely monitoring the process to ensure convergence and assessing performance
metrics like accuracy, precision, recall, and F1 score. As the training progresses, we evaluate the
model's performance using the validation dataset, gauging its effectiveness on unseen data.
Evaluation metrics such as accuracy, confusion matrix, and class-wise metrics offer insights
into the model's classification capabilities, guiding any necessary fine-tuning or adjustments to
hyperparameters or regularization techniques.
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The U-Net architecture itself is a convolutional neural network (CNN) specifically designed for
semantic segmentation tasks. Originally introduced for biomedical image analysis, it has since
found widespread application in various domains, including satellite imagery and autonomous
vehicles. The architecture comprises a contracting path to capture context and a symmetric
expanding path to enable precise localization. By combining these paths, the U-Net model
achieves high-resolution segmentation results, making it well-suited for tasks requiring detailed
object delineation, such as land cover classification in our project between the user and the
system by providing a simple user interface. We can integrate the proposed system with
various platforms like the web interface, mobile application interface, and desktop application
interface. The web interface is more simple to use for the users simply visiting the website they
don't need to download and install any software application. A simple user interface contains
two main components user input where the user simply gives input to the system in the form of
images other one is output which shows in the form of charts, graphs, CSV, PDF, and other
visualization tools.

Result and Performance Details
Performance evaluation using basic evaluation matrics:

1. Precision: Precision measures the ratio of correctly detected trees to the total number of
trees detected by the model. It represents the model's ability to accurately identify trees without
false positives.

2. Recall (Sensitivity): Recall measures the ratio of correctly detected trees to the total number
of trees present in the image. It indicates the model's ability to capture all trees in the image
without missing any.

3. F1 Score: F1 score is the harmonic mean of precision and recall. It provides a balanced
measure of a model's accuracy, considering both false positives and false negatives.

4. Intersection over Union (loU): loU measures the overlap between the predicted bounding
boxes and the ground truth bounding boxes. It quantifies how well the predicted bounding
boxes align with the actual tree locations.

5. Mean Average Precision (mAP): mAP calculates the average precision across multiple loU



thresholds. It provides a comprehensive measure of a model's performance at various levels of

overlap.

Where, is the average precision at loU threshold i, and n is the total number of loU thresholds.

Evaluation Matrics:

Model Precision Recall F1 Score loU mAP
YOLOvE 0.85 0.92 0.88 0.75 0.87
U-Net 0.91 0.89 0.90 0.78 0.88
Result:

The YOLOvE model exhibited robust performance in tree detection, achieving a high precision
of 85% and recall of 92%. The F1 score, a balanced measure of precision and recall, reached
88%, indicating reliable tree detection capabilities. The Intersection over Union (loU) metric,
measuring spatial overlap between predicted bounding boxes and ground truth annotations,
yielded a score of 75%, indicating accurate localization of trees. Furthermore, the model
achieved a mean Average Precision (mAP) of 87% across different confidence thresholds,
highlighting its consistency in tree detection.

The U-Net model demonstrated exceptional performance in land cover classification, with an
overall accuracy of 91%. Class-wise accuracy metrics further revealed the model's
effectiveness in distinguishing between different land cover categories. The model achieved
high accuracies across various classes, including urban (89%), agriculture (92%), rangeland
(87%), forest (93%), water (95%), barren (88%), and unknown (85%). These results underscore
the robustness of U-Net in accurately classifying diverse land cover types.
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