"Deadline and Energy Aware Application Module Placement in Fog-cloud system"
Attar Mohammad Younus ay2229@srmist.edu.in Avijoy Das Adhikari ad3361@srmist.edu.in Jagannath Rath ju8516@srmist.edu.in
[bookmark: Dr. Sujatha K., M.E., Ph.D.,]Dr. Sujatha K., M.E., Ph.D.,
[bookmark: sujathak@srmist.edu.in]sujathak@srmist.edu.in

Abstract: Fog computing, situated at the edge of the network, offers potential as an extension of cloud computing, especially for a wide array of Internet of Things (IoT) applications. Despite its promise to reduce application response times, its widespread implementation relies heavily on the availability and capabilities of resources within the fog infrastructure.
Consequently, efficiently utilizing fog systems to execute various IoT type applications seeing their quality of service (QoS) requirements becomes imperative. This task is surely challenging when applications are broken down into multiple modules with varying latency sensitivities. Moreover, scattering application modules across distributed fog nodes exacerbates the issue by elevating the overall energy consumption of the fog environment. Study introduces a policy for modular application placement in fog computing environments that is deadline and energy-conscious. This policy prioritizes placing critical applications in the fog infrastructure while also consolidating active fog nodes for energy management. The performance of this policy was assessed and compared with various contemporary solutions. Analysis indicate that it can be checked through several prediction models from time series data of collected ip addresses

	· 1.Introduction
Emerging technologies such as the Internet of Things
(IoT) necessitate rapid computation services, particularly for managing real-time applications. In IoT, devices like sensors and mobile devices generate substantial data, ideally processed in cloud systems due to their cost- effectiveness and scalability. However, for certain IoT applications requiring swift responses and minimal latency, cloud systems may not suffice. Addressing this concern, Cisco introduced fog computing in 2012, akin to cloud services but situated closer to users and devices, thereby enhancing service quality and reducing computing and communication costs.

Fog nodes, strategically positioned near data sources, mitigate communication delays, serving as an intermediary layer between IoT and cloud computing, ideal for latency-sensitive applications. Nonetheless, fog nodes are geographically dispersed and possess fewer resources compared to cloud servers, rendering them incapable of handling all applications. Consequently, determining the optimal placement of applications in fog/cloud systems poses a challenge, exacerbated by microservices applications characterized by interdependent modules spanning various computing nodes. Each module necessitates specific resources to function within designated deadlines.
.
	In our research, we introduce a fresh method for positioning applications within fog-cloud systems. We segment applications into modules and prioritize them according to deadlines. This facilitates parallel processing of modules and their efficient distribution across fog/cloud servers, thereby decreasing latency through local or parallel processing on servers and conserving energy.
Our contributions are:	

· Introduction of two placement strategies aimed at enhancing service quality and diminishing power usage.
· Accounting for the dynamic arrival of time- sensitive applications, represented as a Distributed Data Flow model.
· Assessment of our methodologies within the simulated fog environment, iFogSim, demonstrating superior performance compared to alternative approaches.
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The goal of the system is to efficiently allocate computing
 
resources to different modules of an application. This aims to
 
ensure
 
that:
) (
1.
 
Deadlines
 
are ad
hered
 
to
:
 
Every
 
module
 
in
 
an
application must be processed within a designated
 
timeframe. Through strategic module placement, the
 
system guarantees timely processing of all modules,
 
thereby
 
meeting
 
application deadlines
 
collectively.
2. Energy usage is reduced
: Through strategic
 
distribution of modules across fog and cloud
 
servers, the system strives to minimize energy
 
consumption.
 
This
 
includes
 
situating
 
modules
 
near
 
data
 
sources
 
when
 
feasible,
 
employing
 
local
 
processing to cut down on data transmission, and
 
optimizing
 
resource
 
allocation
 
to
 
prevent
 
needless
energy
 
expenditure.
)[image: ]Once requirements are met, module mapping occurs. However, this endeavor solely considers computing resources like CPU and RAM for node selection. Negligible attention is given to other crucial IoT ecosystem factors such as latency and resource availability. In , researchers devised an algorithm for optimal resource allocation in fog computing, framing the allocation issue as a bin-packing penalty aware problem. Each fog device is assessed based on idle energy, maximum frequency, and maximum energy parameters. Penalty and reward mechanisms minimize energy consumption, preventing exponential increases..
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By
 
achieving
 
these
 
goals,
 
the
 
system
 
can
 
enhance
 
the
 
overall
 
performance and efficiency of fog-cloud systems, providing
 
better
 
quality
 
of
 
service
 
while
 
reducing
 
operational
 
costs
 
and
 
environmental
 
impact.
)Introduced the (FSPP) to efficiently distribute resources among IoT services on fog nodes, considering latency and deadline requirements. Proposed a policy for application module management, aiming to optimize working node count to reduce power consumption without violating QoS constraints. Evaluated using it excelled in satisfying latency for applications with strict deadlines. Developed a application placement policy prioritizing requests according to user expectations, considering fog instance capabilities. Similarly, examined QoE. Proposed an optimized placement approach for fog computing applications using genetic algorithms (GA), minimizing computational and communication costs while ensuring resource efficiency.
Likewise, used GA for cost-effective task scheduling in cloud architecture, enhancing cost efficiency for time- sensitive applications. It is a real-time task schedule type system considering deadline type constraints to enhance task mapping, processing.







Figure 1: IoT with Fog-cloud Environment..

2. Related Works
Task distribution and resource handling in fog computing represent emerging subjects that amalgamate various elements of cloud computing, mobile computing, and sensor networks . Within data from sensors, actuators, and similar devices necessitates processing through fog nodes and/or clouds. The authors in introduced a blueprint for distributing workloads in a fog-cloud system, balancing power consumption against latency concerns. The workload allocation issue is subdivided into primary and secondary problems. the framework tackled this challenge, illustrating the complementary nature of fog and cloud ip systems. The interplay architecture of workloads and resources received limited scrutiny . The investigation by introduced a
module-mapping strategy for situating IoT applications within a fog-cloud environment, aiming to optimize utilization of the various resources. This policy addresses network challenges by prioritizing both network nodes and application modules based on available capacity.
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Once requirements are met, module mapping occurs. However, this endeavor solely considers computing resources like CPU and RAM for node selection. Negligible attention is given to other crucial IoT ecosystem factors such as latency and resource availability. In researchers devised an algorithm for optimal resource allocation in framing the allocation issue as a penalty aware problem. Each device is assessed based on energy, maximal frequency, and energy parameters. Penalty and reward mechanisms minimize energy consumption, preventing exponential increases. Explored how it influences application performance by analyzing scheduling problems in fog computing. They examined three scheduling policies— concurrent, first come first serve and delay priorities—to enhance execution time based on application characteristics. Introduced the IP Service Placement Problem to efficiently distribute resources on fog nodes, considering latency and deadline requirements. Proposed a policy for application module management, aiming to optimize working node count to reduce power consumption without violating QoS constraints., it excelled in satisfying latency for applications with strict deadlines. . Similarly, examined QoE. Proposed an optimized placement approach for fog computing applications using genetic algorithms (GA), minimizing computational and communication costs while ensuring resource efficiency. Likewise, used GA for cost-aware task scheduling in fog-cloud infrastructure, enhancing cost efficiency for time-sensitive applications. Presented a real- time task scheduler considering deadline and frequency constraints to enhance task mapping and processing.
The service function chain concept aims to enhance speed, resource use, and efficiency in fog computing through a flexible planning model. It improved resource use by introducing an SFC queue network. introduced the HR-Alloc algorithm for big data applications, focusing on cost and load balancing while maintaining performance. . created Fog-Care, a healthcare software prototype, to decrease latency and increase throughput in distributed locations. proposed a method using FedAvg-BE to handle non-iid data in Federated Learning, selecting quality data with border entropy evaluation. Table 1 compares these works with the current study.
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Table1: Summary on related work

3. Proposed Work

 (
In this section, a novel approach is presented for positioning
 
application modules within fog-cloud systems, prioritizing
 
performance
 
and
 
power
 
efficiency.
 
The
 
objective
 
is
 
to
 
decrease the make span time (MST) of application modules by
 
strategically
 
situating
 
them
 
on
 
fog
 
nodes.
 
Furthermore,
 
the
 
aim
 
is to minimize the quantity of active fog nodes by
 
consolidating more modules onto fewer nodes, thereby
 
enhancing resource utilization and subsequently decreasing
 
power
 
consumption
 
by
 
fog
 
nodes.
Additionally, we consider the possibility of running certain
 
applications
 
on
 
cloud
 
nodes
 
without
 
missing
 
deadlines.
 
In
 
such
 
instances, we choose to deploy those applications on cloud
 
nodes.
 
This not
 
only
 
enhances
 
performance
 
but
 
also
 
diminishes the
 
necessity for fog nodes in the system.
.
)

A. MECHANISM FOR PERFORMANCE- AWARE PLACEMENT SYSTEM
 (
Algorithm 1 outlines the Performance-Aware Placement
 
Mechanism (PEAPM). It initiates by arranging application
 
modules
 
based
 
on
 
their
 
deadlines
 
and
 
then
 
proceeds
 
to
 
select
 
modules
 
for
 
each
 
application in accordance
 
with their
 
dependency constraints, prioritizing modules with no
 
dependencies within
 
the
 
application.
Applications are sequenced by their deadlines, and within each
 
application, modules are sorted by the type of their
 
dependencies. Modules with dependencies are assessed based
 
on
 
their data
 
dependency
 
delay
 
type
 
of
 
system
 
,
 
favoring
 
nodes
 
with minimal delay. Nodes in closer proximity are preferred to
 
reduce data dependency delay, considering node processing
 
speed. The node with the shortest MST is chosen to
 
accommodate the
 
module,
 
provided
 
it
 
possesses
 
sufficient
 
CPU and RAM resources. The placement ensures compliance
 
with
 
the
 
application's
 
delay
 
requirement.
The algorithm predicts the completion time for each task
 
before placing the module on the designated node. If no fog
 
node can accommodate the module, the algorithm yields false
 
results, and the module may be redirected to cloud computing
 
based
 
on
 
resource
 
and
 
delay
 
requirements.
.
)
Algorithm1:
.
Define the placement algorithm with parameters \( m \), \
( l_{\text{max}} \), \( \text{modules} \), and \( \text{nodeList} \):
1. Sort modules by deadline:
- \( Q = \text{sorted(modules, key=lambda x: x.deadline)} \)
2. Initialize \( \text{MSTmin} \) to positive infinity:
- \( \text{MSTmin} = \text{float('inf')} \)
3. Initialize index to -1:
- \( \text{index} = -1 \)
4. Iterate while the queue is not empty:
- \( \text{while Q:} \)
- Iterate over nodes:
- \( \text{for n in nodeList:} \)
- Check resource availability and delay constraint:
- \( \text{if Req}(m) \leq \text{Cap}(n) \) and
\( n.\text{delay} \leq l_{\text{max}} \):
- Calculate temporary MST:
- \( \text{MSTtmp} = \text{MST}(m, n) \)

index = nodeList.getIndex(n)

# Remove processed module from the queue Q.pop(0)

# Check if a suitable node was found if index == -1:
return False else:
# Update node capacity and return true

B. MECHANISM FOR POWER-AWARE PLACEMENT Efficiency in power consumption holds significant importance in both cloud and fog computing environments, directly influencing operational expenses for providers and users. The key to achieving power savings lies in maximizing resource utilization, thereby diminishing the necessity for multiple active computing nodes in fog or cloud configurations. Studies have indicated that. Building upon this insight, this section presents an innovative approach to reducing power usage in fog environments by minimizing the number of active fog nodes, while transitioning inactive nodes to a power-saving mode.

The level of utilization of a fog node, denoted as directs the objective of this mechanism to decrease the count of fog devices hosting application modules. Accordingly, we introduce a power-conscious placement strategy termed Power-Aware Placement Mechanism (POAPM), elucidated in Algorithm 2. The algorithm commences by evaluating the utility level of each fog node, initiating a migration process for application modules if the utility falls below a specified threshold.

The utility threshold, a parameter of the algorithm, plays a crucial role in determining the optimal threshold for achieving maximal power savings. Lower thresholds, like 10%, result in minor migrations, offering limited power benefits. Conversely, higher thresholds may induce excessive migrations.
Discovering the optimal threshold necessitates an iterative approach, experimenting with different values to identify the most suitable one.

In line 4, the algorithm organizes fog layer nodes in ascending order based on their current utilization levels, with the most utilized node selected first. The strategy aims to consolidate application modules on fewer nodes to bolster utilization and, consequently, enhance power savings. The migration of application modules from underutilized nodes (n) to candidate

· Update \( \text{MSTmin} \) if temporary MST is smaller:nodes (nc) is facilitated by the update Cap and remove

· \( \text{if MSTtmp} \leq \text{MSTmin}: \)
· \( \text{MSTmin} = \text{MSTtmp} \)
· \( \text{index} = \text{nodeList.getIndex}(n) \)
· Remove processed module from the queue:
- \( \text{Q.pop(0)} \)
· Check if a suitable node was found:
- \( \text{if index == -1:} \)
· \( \text{return False} \)
- \( \text{else:} \)
- Update node capacity and return true:
- \( \text{updateCap}(n, m)

methods. Ensuring compliance with fog environment performance, line 8 verifies if the latency of the candidate node aligns with latency requirements; otherwise, the module is placed elsewhere. Modules are allocated to nodes to optimize compactness, reducing the need for multiple fog nodes and resulting in lower energy consumption.
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This study introduced a new approach for placing application
 
modules within a fog-cloud system. The focus was on reducing
 
processing time while ensuring acceptable delay levels.
 
We
 
created two strategies, PEAPM and POAPM, and tested them
 
through simulations under different conditions. Based on our
 
findings, our methods outperformed others regarding metrics
 
like
 
TGR,
 
make
 
span,
 
power
 
usage,
 
and
 
violation
 
cost.
 
Performance
 
varied
 
depending
 
on
However, identifying the optimal number of servers for each
 
layer
 
is
 
essential for
 
system improvement,
 
a point
 
to
 
explore
 
in
 
future
 
research.
Additionally,
 
leveraging
 
different
 
meta-heuristic
 
optimization
 
frameworks could further enhance system performance,
 
offering promising directions for future investigation in this
 
field.
)Algorithm2:
def minimizePowerUsage(threshold, nodeList): sortedNodes = sorted(nodeList, key=lambda node:
node.utilization, reverse=True) for node in nodeList:
if node.utilization < threshold: index = 0
for module in node.modules: candidateNode = sortedNodes[index] if requiredResources(module) <=
candidateNode.capacity and candidateNode.delay <= module.max_latency:
updateCapacity(candidateNode, module) remove(node, module)
else:
index += 1



4.  (
Exploratory
 
Data
 
Analysis
 
(EDA)
 
is
 
an
 
approach/philosophy
 
for
 
data
 
analysis
 
that
 
employs
 
a
 
variety
 
of
 
techniques
 
(mostly
 
graphical)
 
to
 
maximize
 
insight
 
into
 
a
 
data
 
set.
 
uncover
 
underlying structure. extract important variables. detect outliers
 
and
 
anomalies.
 
test
 
underlying
 
assumptions.
 
develop
 
parsimonious models; and determine optimal factor settings.
 
EDA is not identical to statistical graphics although the two
 
terms are used almost interchangeably. Statistical graphics is a
 
collection of techniques--all graphically based and all focusing
 
on one data characterization aspect. EDA encompasses a larger
 
venue; EDA is an approach to data analysis that postpones the
 
usual
 
assumptions
 
about
 
what
 
kind
 
of
 
model
 
the
 
data
 
follow
 
with
 
the more direct approach of allowing the data itself to reveal its
 
underlying
 
structure
 
and
 
model.
 
EDA
 
is
 
not
 
a
 
mere
 
collection
 
of
 
techniques;
 
EDA
 
is
 
a
 
philosophy
 
as
 
to
 
how
 
we
 
dissect
 
a
 
data
 
set;
 
what
 
we
 
look
 
for;
 
how
 
we
 
look;
 
and
 
how
 
we
 
interpret..
)Results and Discussions
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