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Abstract— In order to extend the lifetime of the network, the study provides an energy-conscious routing protocol for visual sensor networks that makes use of learning automata ideas. Additionally, this technique is flexible and usable in a variety of settings. via managing the routing discovery process to determine the optimal route in terms of energy consumption via irregular cellular learning automata idea, this solution has the advantage of reducing energy consumption in order to increase network lifetime. Before using irregular cellular learning automata to solve the routing problem in a network based on Voronoi diagrams, we will first propose a model of cellular learning automata in which learning automata are used to modify the state transition probabilities of cellular automata. In the end, we will simulate and assess the proposed route
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· INTRODUCTION
There are hundreds or thousands of sensor nodes in a Wireless Sensor Network (WSN). Each sensor node consists essentially of detecting, processing, transmission, a mechanism for identifying its position, and power units. There are two categories of routing protocols for sensor networks now in use: proactive/table-driven and reactive/on-demand routing protocols. In order to have a route already recognized and ready to use when a packet needs to be forwarded, proactive routing systems make an effort to continuously examine the network's routes. On-demand route determination is carried out using reactive procedures. In order to find the intended destination, the reactive route discovery process often relies on a query-reply exchange [1][15]. Using proactive routing instead of reactive routing is one way to improve the trade-off between the two.
Typically, there are two categories of energy-aware protocols. Some protocols aim to reduce the total energy used by networks, while others manage the energy that is currently available to avoid network segmentation. The suggested protocol, which we call SELARP, reduces the overall energy usage in a network and also regulates the energy that is available. In SELARP, we employ irregular cellular learning automata for managing energy during route discovery processes. We employ this model of learning automata in sensor network topology since it is based on Voronoi diagrams. In order to determine the most efficient routes in terms of energy utilization and hop count, we employed Voronoi diagrams and learning automata techniques. Matlab and Glomosim Simulator simulate this routing protocol.Energy awareness, network lifetime, fault tolerance and scalability in sensor networks are the most important features that must be spotted with these network protocols [2][13].
In a sensor field, which is where the sensor nodes are placed, they are often dispersed. In order to provide high-quality information about the physical environment, sensor nodes cooperate with one another. These sensors have the capacity to communicate both directly with an external base station (BS) and among themselves. The sensor network can be connected to an existing communication infrastructure or to the Internet via a base station, which can be either a stationary node or a mobile node that can provide access to the reported data to users. One of the most crucial factors in sensor networks is energy usage. Each mobile node carries limited power supply in the form of batteries, which restricts computing power, which in turn limits the services and applications that each node can support.
The remainder of this essay is structured as follows. Related works are discussed in Section 2. Voronoi diagram principles are presented in Section 3. In Section 4, an introduction to learning automata is offered. Proposed protocol is presented in Section 5. Section 6 of the suggested protocol is an evaluation of the learning automaton parameters. Section 7 explains the simulation results. Finally, section 8 has the conclusion.






			

· RELATED WORK
Wireless sensor networks can use a variety of learning automata-based routing protocols, each of which aims to meet certain criteria like short distance and low energy consumption to prolong the life of networks [16][17].
One of the most significant energy-aware routing protocols in sensor networks is EAR (Energy-Aware Routing) [3]. EAR finds all possible routes to a location by flooding request messages. Next, it adds fresh paths to the routing tables. Each node in this protocol adds probability to each path in its routing table based on the energy usage and distance to the next node along the path to the destination. Based on the probabilities of the paths in its routing table, the source node chooses one path for data sending and transmits the data to the destination. As a result, the network has a longer lifespan since numerous paths are employed to convey data rather than just one.
TinyLap [4] is the other routing protocol that makes use of the learning automata notion. This protocol operates in three phases: the Flooding phase (FP), the Learning and Table Construction phase (LT), and the Routing and Learning phase (RL). It uses four different packet types. a node seeking to measure Euclidean distance. We refer to the line segment from p to q as pq. Perpendicular bisectors of a point set in a 2D space are used to draw Voronoi diagrams, as seen in figure 1.

     

                                           




                              Figure 1. Divided plane with perpendicular bisector of two points

Considering a set of S points p1, p2, …, pn in the plane, a Voronoi diagram divides the plane into n Voronoi regions with the following properties:
· Each point pi lies in exactly one region.
· If a point q  S lies in the same region as pi, then the Euclidian distance from pi to q will be shorter than that from pi to q, where pi is any other point in S.
These Voronoi regions are also called Voronoi Polygons. The points p1, p2,…, pn are called Voronoi sites.
Such diagrams would consist of two unbounded Voronoi regions, denoted by V(pi) and V(pj),in equation(3). In general, a Voronoi region V(pi) is defined as the intersection of n − 1 half-planes formed by taking the perpendicular
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Calculated is that node's initial preference. The packets are routed during the RL phase while consulting the forwarding tables, and nodes constantly learn through this activity.
Another routing system that uses learning automata to determine paths for balancing network traffic load is LABER (Learning Automata based Energy aware Routing protocol), [5]. The "Create Routing Tables" phase and the "Routing and Learning Phase" make up this protocol. To establish routing tables in each node, the destination node starts flooding the network in the first phase. other receiving nodesA convex shape is created by several half-plane intersections.

a space surrounded by a series of linked line segments. Voronoi edges are formed by these line segments as the boundary of Voronoi regions. These edges' ends are known as
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path. In the second phase, Source node selects one path from
 
Finally, the Voronoi diagram of S is defined by (5).

data packets on it and routes them according to choices in the routing table. The sender node of the data packet then rewards or penalizes this activity by means of its learning automata when a node receives a data packet by sending an acknowledgement packet to the recipient node. Until data packets arrive at their destination, this process continues.
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· VORONOI DIAGRAMS
In this section, we introduce concepts of Voronoi Diagrams and describe necessary steps to create them. A naive approach to construct a Voronoi diagram is to determine the region for each point using Euclidean distance [11]. For points p= (xp, yp) and q= (xq, yq) in the
 


                                           

 
                             Figure 2. Create half-plane by perpendicular bisector

By definition, each Voronoi region is the intersection of
n – 1 open half-planes containing the site p.

plane,	let
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                                                                              Figure 3. Voronoi diagrams of collection points on plane




· LEARNING AUTOMATA CONCEPT
This section introduces the concepts of learning automata (LA), irregular cellular automata (ICA), and irregular cellular learning automata (ICLA), which is the model we employ in this article.
· Learning Automata
An abstract model called LA chooses one action at random from a limited range of activities and executes it in a random environment. The environment then assesses the chosen action and the automata's replies by sending a reinforcement signal. The automaton modifies its internal state and chooses its subsequent action in accordance with the chosen action and the signal it has received. The interaction between an automaton and its surroundings is shown in Figure 4. The triplet can be used to define environment. E={α, β, c} where α={α1, α2 …, αr} represents a finite input set, β= {β1, β2, …, βr} represents the output set, and c={c1, c2, …, cr} is a set of penalty probabilities, where each element ci of c corresponds to one input action αi. There are two types of learning automata: fixed-structure stochastic and variable-structure stochastic. We solely take into account variable-structure automata in the following.
A variable-structure automata is defined by the quadruple {α, β, p, T} in which α={ α1, α2, …, αn} represents the action set of the automata, β={ β1, β2, …, βr} represents the input set, p={p1, p2, …, pr} represents the action probability set, and finally p(n+1)=T[α(n), β(n), p(n)] represents the learning algorithm. This machine functions as follows. The automaton randomly chooses an action i and executes it on the environment based on the action probability set p. After receiving the reinforcement signal from the environment, the automaton modifies its action probability set based on equations (6) for positive responses and (7) for negative ones.
pi (n  1)  pi (n)  a.(1  pi (n))
 
β(n)

Figure 4. Relationship between learning automata and its environment

· Irregular Cellular Learning Automata
The concept of irregular cellular automata was first put forth in the middle of the 1980s [8], but has since received less attention as a result of the computationally demanding procedures needed to search for irregular neighborhoods. Informally speaking, ICA is a setup of points in the area with no restrictions beforehand. Each point is surrounded by a number of other points, as shown in Figure 5. The few ICA examples all split space and identify each point's neighbors using Voronoi polygons or a related Delaunay triangulation [10]. Space is divided into zones surrounding things by Voronoi polygons, each of whose points is closer to the object than to any other object. Despite the fact that the Delaunay triangulation is a triangle formed by

  
A learning automaton and an irregular cellular automata are combined to form an ICLA [9], Figure 6. We define ICLA as an undirected graph where each vertex represents a learning automaton-equipped cell. Based on its action probability vector, the learning automaton that resides in a given cell chooses its state (action). The Irregular cellular learning automaton functions in accordance with a rule, just as Cellular Learning Automata. The reinforcement signal to the learning automata located in a cell is determined by the rule of the cellular learning automata and the actions chosen by the nearby learning automatons of any given learning automaton. The local environment of each given learning automaton is made up of its nearby learning automata. The surrounding area
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In these two equations, a and b are rewarded and penalty parameters, respectively. For a = b, learning algorithm is called LR-P, for a << b, it is called LRεP, and for b=0, it is called LR-I. For more information about learning automata the reader may refer to [6][7].
 




Figure 5. Neighborhoods of three different cells in an irregular field.
Focal cells are gray, neighbor cells are red

An ICLA is formally defined below. Neighborhood of each cell in ICLA is implicitly defined based on the definition of the graph G.
 
HopCount by one and forward this packet to their neighbors. For each packet received, an entry for the node Id in the packet is created in Routing Table, Def.3, and initial preference for that node is calculated as follows:
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Figure 6. Irregular cellular learning automata

· PROPOSED PROTOCOL
One LR-P learning automata is assigned to each network node in the proposed protocol SELARP, which employs irregular cellular learning automata to map a sensor network's topology. If a cell is a carrier cell, then all other cells are its neighbors.
The fundamental concept behind the suggested protocol is related to Voronoi diagrams and learning automata. The protocol chooses the node that is farthest away from the present node and has the highest energy level for each phase of route finding. As a result, it controls network energy consumption by using nodes with higher energy levels.
The NEIGHBOR packet, DATA packet, ACK packet, and AGENT packet are the four different packet types used by this protocol. The definitions we employ are as follows:
Where pi denotes the likelihood of choosing the ith neighbor node, EnergyLeveli and VoronoiRegioni denote the ith neighbor node's energy level and Voronoi region area, respectively, and non denotes the total number of neighbor nodes.
In fact, the FC phase is carried out to obtain the preferences of each node, and the protocol uses these preferences to choose the node that is closest to the present node and has the maximum energy level.

LR phase: When a node sees an event, it adds the event with a distance of 0 to its Event List, Def.1. Additionally, an AGENT packet is produced. Then, it chooses a neighbor from its routing table with a high probability and sends an AGENT packet to that node. To locate the BS node, this packet traverses the network (Figure 7). As soon as a node receives an AGENT packet, it generates an ACK packet containing the fields NodeId and EnergyLevel and sends it to the sender node. A node compares the Energy level in its routing table with the Energylevel of the ACK packet when it receives the ACK packet. The following action is then taken.
The learning automaton located in the node updates the action vector probability in the routing table in accordance with the LR-P learning algorithm if the energy level value in the received ACK packet reaches a threshold, as in equation (9).

· Def.1: Event List. This list stores the event names and
the distance to the events. The nodes maintain their respective event lists.
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· Def.2: Neighbor List. Neighbor list stores the node Id and energy of the neighbors.
· Def.3: Routing Table. Routing table stores all paths of source node to other nodes and route probability of the
·  
· If the value of energy level in the ACK packet is
lower than a threshold,as in equation (10), this action is penalized by learning automata residing in the node according to LR-P learning algorithm.
non

neighbors for SELARP.
Each learning Automaton has r actions {α1, α2, …, αr }, where r is the number of paths.
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(10)
Two phases make up SELARP: the building of the flooding and routing tables phase (FC phase) and the learning and routing phase (LR phase).

FC phase: Each node builds its probability vectors (p1, p2,..., p4) at this phase. A NEIGHBOR packet is produced by a base station (BS) node, and it is forwarded to nearby nodes. The NodeId, EnergyLevel, Voronoi Area, and HopCount fields make up this packet. The EnergyLevel field indicates the energy level of the node that sent this packet, and the Voronoi Area field indicates the region of the Voronoi diagram in which the node is centered. The NodeId field includes the node's ID. With HopCount 1, BS broadcasts a NEIGHBOR packet to its neighbor. After receiving this packet, neighbor nodes build their local routing tables and increase
·  
· The system learns about the optimal paths that are accessible thanks to the acknowledgement it receives from the nodes during this phase.
· Based on choices from the first phase, the LR phase determines the optimum path from the event to the BS in terms of the energy level and distance of each node.

· EVALUATION
This section compares the proposed protocol with the EAR, TinyLap, and LABER routing protocols by implementing it in Matlab and Glomosim [18][19], a scalable discrete event simulator created by UCLA. GloMoSim also uses every one of these protocols. I then stand for evaluations.






Figure 7. Learning and Routing phase in proposed protocol

We first describe how the tests were set up before presenting the simulation results for the impact of learning parameters a and b on SELARP performance.
 
So in figure 8(b), the 95% confidence interval on the mean indicates that deviation is minimized.
TABLE I.

Comparison of energy consumption in proposed protocol with different values of a and b for 1 event occurring in the network

	
	Number of Nodes

	
	1000
	1500
	2000
	2500
	3000

	Learning Parameter (a=b)
	0.01
	225.063
	225.059
	225.046
	225.038
	225.026

	
	0.05
	225.061
	225.057
	225..039
	225.03
	225.02

	
	0.1
	225.055
	225.049
	225.035
	225.02
	225.01

	
	0.2
	225.059
	225.052
	225.032
	225.025
	225.011

	
	0.3
	225.066
	225.061
	225.043
	225.035
	225.017


TABLE II.

	
	Number of Nodes

	
	1000
	1500
	2000
	2500
	3000

	Learning Parameter (a=b)
	0.01
	232
	229.15
	228
	226.72
	225

	
	0.05
	231
	230
	229
	227.4
	226.21

	
	0.1
	229.5
	228
	227.12
	225.22
	224.1

	
	0.2
	229
	228.6
	228.01
	227.34
	226

	
	0.3
	230.7
	229
	228.7
	227.03
	225.6



Comparison of energy consumption in proposed protocol with different values of a and b for 30 events occurring in the network

· Simulation Settings
· The radio bandwidth is 250000 (bps), the initial energy level of each node is 5 (dbm), the radio transmit power is 10 (dbm), the mac protocol is 802.15.4, and the temperature of each node is 290 (in K). The network area is 2000*2000 (in m2), node placement is random, no mobility is taken into account, and the numbers of nodes are 1000, 1500, 2000, 2500, and 3000.In a learning automata LR-P for which network life time is maximized, we employ various values of the a and b parameters.
· Effect of Learning Automata parameters
In tables 1 to 4, the first simulation results are shown. These tables display the energy usage for various learning parameter values (a and b) and network event densities.
For the proposed protocol, a=b=0.1 yields the best results in terms of energy usage as shown in tables 1 to 4. A hypothesis test is run to compare these averages. We then examine if the samples are drawn from normal distributions, which is the first stage. Figures 8(a), 8(b), and 8(c) show a normal probability curve. The normalcy test can be quantified using a hypothesis test. The default level of significance is 5%. A null hypothesis is rejected by the probability plot and the difference in the computed sample mean..

t  x  	(11)
s

The t-statistic has a distribution with n - 1 degree of freedom under the null hypothesis that the population is distributed with mean. A t-test can therefore calculate an estimate of the standard deviation from the sample, called s.

 


TABLE III.

Comparison of energy consumption in proposed protocol with different values of a and b for 40 events occurring in the network

	
	Number of Nodes

	
	1000
	1500
	2000
	2500
	3000

	Learning Parameter (a=b)
	0.01
	235
	232.45
	231
	229.5
	227

	
	0.05
	235
	234.1
	233.2
	231.04
	228.83

	
	0.1
	233.6
	231.55
	230
	228.62
	226.3

	
	0.2
	233
	232.7
	231.67
	230.8
	229

	
	0.3
	234.47
	233
	232.5
	231.2
	228.7


TABLE IV.

Comparison of energy consumption in proposed protocol with different values of a and b for 50 events occurring in the network

	
	Number of Nodes

	
	1000
	1500
	2000
	2500
	3000

	Learning Parameter (a=b)
	0.01
	240
	238
	236.5
	234
	233

	
	0.05
	239.2
	238.23
	237
	236.12
	235

	
	0.1
	237
	236.76
	234.95
	233.7
	232.05

	
	0.2
	238.23
	237
	236.44
	234.61
	234

	
	0.3
	239
	237.68
	237
	234
	234.3



In the next section, we study the impact of the event numbers in the energy consumption and overhead compared with other routing protocols.
· SIMULATION RESULT
In the second simulation, the best energy consumption results for three different routing protocols—EAR, TinyLap, and LABER—are compared with those for the proposed routing protocol with learning parameter a=b=0.1.
Figures 9(a), 9(b), and 9(c) depict the network's average energy usage for 30, 40, and 50 events, respectively. These comparison findings demonstrate that the SELARP performs better with


More and more events are occurring in the network. Energy consumption increases as the number of events rises.

,too.





· (b)
 
makes overhead go up. SELARP does not require a flood network and only requires ACK and AGENT packets for each node along the way to the destination; it does not use any other packet types.

· CONCLUSTION
An energy-conscious routing technique was introduced in this paper. Irregular cellular learning automata are used in this method to locate pathways in wireless sensor networks. When there are a lot of events in the network, simulation results demonstrate that the proposed protocol performs better than similar routing protocols like LABER, TinyLap, and EAR in terms of energy usage and overhead. This increases network longevity and aids in energy management. SELARP employs AGENT packets to find pathways rather than flooding the entire network for every event. The protocol also substitutes local search for global search, which is a costly stage in sensor networks. However, because it makes use of Voronoi regions, this routing protocol can be expanded in many different areas..





(c)
Figure 8. Normal probability plots for different values of a and b. (a)
a=b=0.01 (b) a=b=0.1 and (c) a=b=0.3

Because TinyLap floods the network twice for each event occurrence whereas LABER only needs one flooding, LABER routing protocol performs better and uses less energy than EAR and TinyLap routing protocols in Figure 9. Because this protocol leverages AGENT packets to discover the route and does not flood for each event occurrence, SELARP performs better as the number of events in the network increases. These graphs clearly show which SELARP performs at its peak when the network's node count is high.
Figures 10(a), 10(b), and 10(c) show the overhead of path finding for SELARP in comparison to EAR, TinyLap, and LABER routing protocols for 30, 40, and 50 events occurring in the network with 2000 nodes. Overhead calculated from fraction number of control packets rather than the total number of packets is sent for routing during simulation time.
In LABER AGENT, ACK and WARN packets are used for each node multiplied by rising data packets, whereas WARN and REPLY packets are used in TinyLap AGENT and each node's path in the network is computed twice in the latter agent.
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