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ABSTRACT 
The purpose of this paper is to explore the concept of vague sets in order . In this paper, we introduce the notion of vague 𝛾* generalized closed sets and investigate some of their properties. Vague sets are an extension of fuzzy sets. In the context of the theory of vague 𝛾* generalized closed sets, we construct few examples that are useful and we also obtain some interesting theorems.
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1. INTRODUCTION 
The concept of fuzzy sets and its operation was introduced by Zadeh [8] in 1965.After that Coker [2]  introduced the notion of intuitionistic fuzzy topological spaces. The concept of vague set was introduced by Gau and Burherer[4]. In this paper, the concept of vague 𝛾* generalized closed set had been introduced and some of its properties have been discussed.

2. PRELIMINARIES
Definition 2.1 [3]:
      A vague set A in the universe of discourse X is characterized by two membership functions given by:
· A true membership function  and
· A false membership function 
      where   is a lower bound on the grade of membership of  derived from the “evidence for ”,   is a upper bound on the negation of  derived from the “evidence for ”, and . Thus the grade of membership of any element  in the vague set A is bounded by a subinterval of . 
       If  the actual grade of membership of  then .
      The vague set A is written as  where the interval is called the “vague value” of  in A, denoted by .
Definition 2.2 [3]:
      Let A and B be VSs of the form  and  .  Then 
·  if and only if  and  for all 
·  if and only if  and 
· 
· 
· 
Definition 2.4[4]:
     A vague topology (VT in short) on X is a family  of VSs in X satisfying the following axioms.
· 
· ,for any 
·  for any family{
In this case the pair is called a Vague topological space (VTS in short) and anyVS in  is known as a Vague open set (VOS in short) in X.
The complement of a VOS A in a VTS  is called a vague closed set (VCS in short ) in X.

Definition 2.5[5]:
 A vague set 𝐴 = {(𝑥: [(𝑥), 1 − 𝑓(𝑥)]|𝑥 ∈ 𝑋 )} in a VTS (𝑋, 𝜏) is said  to 
Vague 𝛾* closed set (V 𝛾*CS) if ((𝐴)) ∩ 𝑉𝑖𝑛𝑡(𝑉𝑐𝑙(𝐴)) ⊆ 𝐴
· Vague 𝛾* closed set (V 𝛾*CS) if (𝑉𝑖𝑛(𝐴)) ∩ 𝑉𝑖𝑛𝑡(𝑉𝑐𝑙(𝐴)) ⊆ 𝐴
· Vague 𝛾* open set (V 𝛾* OS) if 𝐴 ⊆ (𝑉𝑐𝑙(𝐴)) 𝖴 𝑉𝑐𝑙(𝑉𝑖𝑛𝑡(𝐴))

 Definition 2.6[6]:
    Let 𝐴 be a Vague set in (𝑋, 𝜏), then
· 
·  𝛾*(𝐴) ⊆ 𝐴 ∩ (𝑉𝑐𝑙(𝑉𝑖𝑛𝑡(𝐴)) ∩ 𝑉𝑖𝑛𝑡(𝑉𝑐𝑙(𝐴))

Definition 2.7[4]:
     A Vague Set 𝐴 = {(𝑥: [(𝑥), 1 − 𝑓𝐴 (𝑥)]|𝑥 ∈ 𝑋 )} in a VTS (𝑋, 𝜏)is said to be a
· Vague semi closed set (VSCS) if ((𝐴)) ⊆ 𝐴.

· Vague α-open set (V𝛼OS) if 𝐴 ⊆ 𝑉𝑖𝑛𝑡 (((𝐴))).

· Vague regular closed set (VRCS) if 𝐴 = (𝑉𝑖𝑛(𝐴)).

· Vague regular open set (VROS) if 𝐴 = ((𝐴)).

· Vague pre-open set (VPOS) if 𝐴⊆ ((𝐴)).

· Vague pre-closed set (VPCS) if (𝑉𝑖𝑛𝑡 (𝐴)) ⊆ 𝐴
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Definition 3.1:
   A vague set 𝐴 in a VTS (𝑋, 𝜏) is said to be a vague 𝛾* generalized closed sets  (V 𝛾* GCS) if (𝑉𝑖𝑛(𝐴)) ∩ 𝑉𝑖𝑛𝑡(𝑉𝑐𝑙(𝐴))⊆ U whenever 𝐴 ⊆ 𝑈 and 𝑈 is a V𝛾* OS in (𝑋, 𝜏).
Example 3.2: 
     Let 𝑋 = {𝑎, 𝑏} and 𝜏 = {0, 1, G} is VTS in 𝑋, where   = {𝑥: [0.5,0.4]; [0.5,0.6]} .Then (𝑋, 𝜏) is VTS. Let 
𝐴 = {𝑥:[0.4,0.4];[0.6,0.6]} is VTS in (𝑋, 𝜏) .We have 𝐴 ⊆ 1 .Now 𝑉𝑐𝑙(𝑉𝑖𝑛𝑡(𝐴)) ∩ 𝑉𝑖𝑛𝑡(𝑉𝑐𝑙(𝐴))=0 ⊆ 1, Where 1 is VOS in X. This implies that A is a V 𝛾* GCS in 𝑋.
Theorem 3.3: 
    Every VCS is V 𝛾* GCS in (𝑋, 𝜏) but not conversely in general.

Proof:
Let 𝐴 be a VCS in (𝑋, 𝜏). Let 𝐴 ⊆ 𝑈 where 𝑈 is VOS in (𝑋, 𝜏). Since A is a VCS . As (𝑉𝑖𝑛𝑡(𝐴)) ∩ 𝑉𝑖𝑛𝑡(𝑉𝑐𝑙(𝐴))⊆ . Hence 𝐴 is V 𝛾*GCS   in (𝑋, 𝜏). 


Example 3.4:
     In Example 3.2,the VTS 𝐴 = {𝑥:[0.4,0.4];[0.6,0.6]} is V 𝛾* GCS 𝑉𝑐𝑙(𝑉𝑖𝑛𝑡(𝐴)) ∩ 𝑉𝑖𝑛𝑡(𝑉𝑐𝑙(𝐴)) but not an VCS in (𝑋, 𝜏) , as   𝑉𝑐𝑙(𝐴) 
Theorem 3.5:
     Every VSCS is V 𝛾*GCS in (𝑋, 𝜏) but not conversely.
 Proof:
Let A be a VSCS and let 𝐴 ⊆ U and  be a VOS in (X, τ). Since A is every VSCS 𝑉𝑖𝑛t(𝑉𝑐𝑙(𝐴)) ⊆ 𝐴.
Now  𝑐𝑙(𝑉𝑖𝑛𝑡(𝐴)) ∩ 𝑉𝑖𝑛𝑡(𝑉𝑐𝑙(𝐴))⊆ 𝐴 ⊆ 𝑈 .Hence  A  is a  V 𝛾*GCS  in  (X, τ).
Example 3.6:
    In Example 3.2, the vague set 𝐴 = {𝑥:[0.4,0.4];[0.6,0.6]} is a V 𝛾* GCS  𝑉𝑐𝑙(𝑉𝑖𝑛𝑡(𝐴)) ∩ 𝑉𝑖𝑛𝑡(𝑉𝑐𝑙(𝐴)) but not         VSCS in (X, τ)  as 𝑉𝑐𝑙(𝑉𝑖𝑛𝑡(𝐴)) = 1  𝐴.
Theorem 3.7:
    Every VRCS is V 𝛾* GCS in (𝑋, 𝜏) but not conversely.
Proof: 
    Let A be a VRCS in (X, τ). Since every VRCS is VCS by theorem 3.3,  A is a  V 𝛾*GCS in (X, τ).
Example 3.8: 
      In Example 3.2, the vague set 𝐴 = {𝑥:[0.4, 0.4];[0.6,0.6]}  be a VTS in (X, τ). Then A is a V 𝛾* GCS as whenever  but not  VRCS in (X, τ) as 
Theorem 3.9: 
        Every VCS is V 𝛾* GCS in (𝑋, 𝜏) but not conversely in general.
Proof:
Let 𝐴 be a V𝛼CS in (𝑋, 𝜏) . Let 𝐴⊆𝑈 where 𝑈 be a in (𝑋, 𝜏) . Now (𝑉𝑖nt(𝐴)) ∩ 𝑉𝑖𝑛𝑡(𝑉𝑐𝑙(𝐴))⊆ 𝑉𝑐𝑙(𝑉𝑖𝑛𝑡 (𝑉𝑐𝑙 (𝐴)) 𝑉𝑐𝑙(𝑉𝑖𝑛𝑡 (𝑉𝑐𝑙 (𝐴)) ⊆ 𝐴 , by hypothesis. Hence 𝐴 is V 𝛾* GCS in (𝑋, 𝜏). 

Example 3.10: 
      In Example 3.2, the vague set 𝐴 = {𝑥:[0.4, 0.4];[0.6,0.6]}  be a VTS in (X, τ). Then A is a V 𝛾* GCS as whenever  but not   VCS in (X, τ) as 
Theorem 3.11:
    Every VCS is V 𝛾* GCS in (𝑋, 𝜏) but not conversely in general.
Proof: 
   Let 𝐴 be a VCS in (𝑋, 𝜏). Let 𝐴⊆𝑈 where 𝑈 be a in (𝑋, 𝜏) .Since A is  a ,Hence 𝐴 is V 𝛾* GCS in (𝑋, 𝜏). 

 Example 3.12: 
               Let 𝑋 = {𝑎, 𝑏} and 𝜏 = {0, 1, G} is VTS in 𝑋, where   = {𝑥: [0.5,0.4]; [0.5,0.6]} .Then (𝑋, 𝜏) is VTS. Let   = {𝑥:[0.4, 0.4];[0.6,0.6]} is a V 𝛾* GCS as whenever  but not  VCS in (X, τ) as 




3. CONCLUSION
In this present paper we introduced and studied a concept of vague  generalized closed sets. The basic properties of   vague  generalized closed sets are also presented and discussed.
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