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ABSTRACT

In recent years, due to advancement in modern technology and social communication, advertising new job posts
has become very common issue in the present world. So, fake job posting prediction task is going to be a great
concern for all. Like many other classification tasks, fake job posing prediction leaves a lot of challenges to face.
This paper proposed to use different data mining techniques and classification algorithm like Logistic
Regression, support vector machine, naive bayes classifier, random forest classifier, to predict ajob post if it is
real or fraudulent. Our application was built which takes Job Id, Description and job Requirements to predict
whether the given job post is real or fake. We have experimented on Employment Scam Aegean Dataset
(EMSCAD) containing 18000 samples. The trained classifier shows approximately 98% classification accuracy
to predicts fraudulent job post

1. INTRODUCTION

In modern time, the development in the field of industry and technology has opened a huge opportunity for new
and diverse jobs for the job seekers. With the help of the advertisements of these job offers ,job seekers find out
their options depending on their time, qualification, experience, suitability etc. Recruitment process is now
influenced by the power of internet and social media. Since the successful completion of a recruitment process is
dependent on its advertisement, the impact of social media over this is tremendous. Social media and
advertisements in electronic media have created newer and newer opportunity to share job details. Instead of this,
rapid growth of opportunity to share job posts has increased the percentage of fraud job postings which causes
harassment to the job seekers. So, people lacks in showing interest to new job postings due to preserve security
and consistency of their personal, academic and professional information.Thus the true motive of valid job
postings through social and electronic media faces an extremely hard challenge to attain people’s belief and
reliability. Technologies arearound us to make our life easy and developed but not to create unsecured
environment for professional life. If jobs posts can be filtered properly Predicting false job posts, this will be a great
advancement for recruiting new employees. .Fake job posts create inconsistency for the job seekerto find their
preferable jobs causing a huge waste of their time. An automated system to predict false job post opens a new
window to face difficulties in the field of Human Resource Management.

2. LITERATURE SURVEY

Many researches occurred to predict if a job post is real or fake. A good number of research work sare to check
online fraud job advertiser. Vidros [1] et al. identified job scammers as fake online job advertiser. They found
statistics about many real and renowned companies and enterprises who produced fake job advertisements or
vacancy posts with ill-motive. They experimented on EMSCAD dataset using several classification algorithms like
naive bayes classifier, random forest classifier, Zero R, One R etc. Random Forest Classifier showed the best
performance on the data set with 89.5% classification accuracy.

They found logistic regression performing very poor on the dataset. One R classifier performed well when they
balanced the dataset and experimented on that. They tried in their work to find out the problems in ORF model
(Online Recruitment Fraud) and to solve those problems using various dominant classifiers. Alghamdi [2] et al.
proposed a model to detect fraud exposure in an online recruitment system. They experimented on EMSCAD
dataset using machine learning algorithm.

They worked on this dataset in three steps- data pre-processing, feature selection and fraud detection using
classifier. In the preprocessing step, they removed noise and html tags from the data so that the general text
pattern remained preserved. They applied feature selection technique to reduce the number of attributes
effectively and efficiently. Support Vector Machine was used for feature selection and ensemble classifier using
random forest was used to detect fake job posts from the test data. Random forest classifier seemed a tree
structured classifier which worked asensemble classifier with the help of majority voting technique. This
classifier showed 97.4% classification accuracy to detect fake job posts.
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Huynh [3] etal. proposed to use different deep neural network models like Text CNN, Bi-GRU-LSTM CNN and
BiGRU CNN which are pre-trained with text dataset. They worked on classifying IT job dataset. They trained IT
job dataset on Text CNN model consisting of convolution layer, pooling layer and fully connected layer. This
model trained data through convolution and pooling layers. Then the trained weights were flattened and passed
to the fully connected layer. This model used soft max function for classification technique. They also used
ensemble classifier(Bi-GRUCNN, Bi-GRULSTMCNN) using majority voting technique to increase classification
accuracy. They found 66% classification accuracy using Text CNN and 70% accuracy for Bi-GRU- LSTM CNN
individually. This classification task performed best with ensemble classifier having an accuracy of72.4%.

Zhang [4]etal. proposed an automatic fake detect or model to distinguish between true and fake news (including
articles, creators, subjects) using text processing. They had used acustom dataset of news or articles posted by
Politick website twitter account. This dataset was used to train the proposed GDU diffusive unit model. Receiving
input from multiple sources simultaneously, this trained model performed well a sanautomatic fake detector
model.

Researchers experimented a good number of classifiers and feature selection technique to achieve good
performance in the field of fake job post classification. Text processing using deep learning model, feature
selection using support vector machine, data pre-processing etc. were mentioned approach to apply [8], [9], [10],
[11], [12]. We have proposed to use deep neural network to predict job scams. We have applied the training
method only on the categorical attribute of the EMSCAD dataset instead of using text data. This approach reduces
the number of trainable attribute effectively with less processing time. We have made a comparative study on the same
features of EMSCAD dataset using K Nearest Neighbor, Naive Bayes classifier, fuzzy KNN, decision tree, support
vector machine,random forest classifier and neural network

3. PROPOSED SYSTEM

The system has used EMSCAD to detect fake job post. This dataset contains 18000 samples and each row of the
data has 18 attributes including the class label. The attributes are job_id, title, location, department, salary range,
company profile, description requirements, benefits, telecommunication, has company_ logo, has questions,
employment type, required experience, required education, industry, function, fraudulent (class label). Among these
18attribute, we have used only7 attributes which are converted into categorical attribute.

The telecommuting, has_ company_ logo, has questions, employment type, required experience, required education
and fraudulent are changed into categorical value from text value. For example, “employment type”values are
replaced like this- 0 for “none”, 1 for ‘full-time”, 2 for “part-time” and 3 for “others”,4 for “contract’ and 5 for
“temporary”. The main goal to convert these attributes into categorical form is to classify fraudulent job
advertisements without doing any text processing and natural language processing. In this work, we have used
only those categorical attributes

4. ADVANTAGES OF PROPOSED SYSTEM

The proposed has been implemented EMSCAD technique which is very accurate and fast. The system is very
effective due to accurate detection of Fake job posts which creates inconsistency for the jobseeker to find their
preferable jobs causing huge waste of their time.

5. LOGISTIC REGRESSION

Logistic regression analysis studies the association between a categorical dependent variable and a set of
independent (explanatory) variables. The name logistic regression is used when the dependent variable has only
two values, such as 0 and 1 or Yes and No. The name multinomial Logistic regression is usually reserved for the
case when the dependent variable has three or more unique values, such as Married, Single, Divorced, or Widowed.
Although the type of data used for the dependent variable is different from that of multiple regression, the
practical use of the procedure is similar.

This program computes binary logistic regression and multinomial logistic regression on both numeric and
categorical independent variables. It reports on the regression equation as well as the goodness of fit, odds ratios,
confidence limits, likely hood, and deviance. It performs a comprehensive residual analysis including diagnostic
residual reports and plots. It can perform an independent variable subset selection search, looking for the best
regression model with the fewest independent variables. It provides confidence intervals on predicted values and
provides ROC curves to help determine the best cutoff point for classification. It allows you to validate your
results by automatically classifying grows that are not used during the analysis.
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FIG 1: Logistic regression
6. NAIVE BAYES CLASSIFIER

The naive bayes approach is a supervised learning method which is based on a simplistic chypothesis: it assumes
that the presence (or absence)of a particular feature of a class is unrelated to the presence(or absence)of any other
feature.

Yet, despite this, it appears robust and efficient. Its performance is comparable toother supervised learning
techniques. Various reasons have been advanced in the literature. In this tutorial, we highlight an explanation based
on the representation bias. The naive bayes classifier is a linear classifier, as well as linear discriminant analysis,
logistic regression or linear SVM(support vector machine). The difference lies on the method of estimating the
parameters of the classifier (the learning bias).

Thus, we introduce in a new presentation of the results of the learning process. The classifier is easier to
understand, and its deployment is also made easier. In the first part of this tutorial, we present some theoretical
aspects of the naive bayes classifier. Then, we implement the approach on a dataset with Tanagra. We compare the
obtained results (the parameters of the model) to those obtained with other linear approaches such as the logistic
regression, the linear discriminate analysis and the linear SVM. We note that the results are highly consistent.
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FIG 2: Naivebayes
7. RANDOM FOREST CLASSIFIER

Random forests or random decision forests are an ensemble learning method for classification, regression and
other tasks that operates by constructing a multitude of decision trees at training time. For classification tasks,
the output of the random forest is the class selected by most trees. For regression tasks, the mean or average
prediction of the individual trees is returned. Random decision forests correct for decision trees' habit of over fitting
to their training set. Random forests generally outperform decision trees, but their accuracy is lower than gradient
boosted trees. However, data characteristic scan affect their performance. The first algorithm for random
decision forests was created in 1995 by Tin KamHo[1] using the random sub space method, which ,in Ho's
formulation ,is a way to implement the" stochastic discrimination” approach to classification proposed by
Eugene Kleinberg. An extension of the algorithm was developed by Leo Breiman and Adele Cutler, who
registered "Random Forests" as a trademark in 2006 (as of 2019, owned by Minitab, Inc.).The extension combines
Breiman's "bagging" idea and random selection of features, introduced firstby Ho [1] and later independently by
Amit and Geman [13] in order to construct a collection of decision trees with controlled variance.
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FIG 3: Random forest
8. SUPPORT VECTOR MACHINE

In classification tasks a discriminant machine learning technique aims at finding, based on an independent and
identically distributed training dataset ,a discriminate function that can correctly predict labels for newly acquired
instances. Unlike generative machine learning approaches, which require computations of conditional probability
distributions, a discriminant classification function takes a data points and assigns it to one of the different classes
that area part of the classification task. Less powerful than generative approaches, which are mostly used when
prediction involves outlier detection, discriminant approaches require fewer computational resources and less training
data, especially for a multidimensional feature space and when only posterior probabilities are needed. From a
geometric perspective, learning a classifier is equivalent to finding the equation for a multidimensional surface
that best separates the different classes in the feature space. The SVM Kkernel is a function that takes low-
dimensional input space and transforms it into higher-dimensional space, i.e. it converts no separable problems
to separable problems. It is mostly useful in non-linear separation problems. Simply put the kernel, does some
extremely complex data transformations and then finds out the process to separate the database don the labels or
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Fig. 1. Proposed Methodology
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9. SAMPLE DATA SET OF JOB PREDICTION
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11. CONCLUSION

Job scam detection has become a great concern all over the world at present. In this paper, we have analyzed the
impacts of job scam which can be a very prosperous area in research filed creating a lot of challenges to detect
fraudulent job posts. We have experimented with Kaggle dataset which contains real life fake job posts. In this
paper we have experimented both machine learning algorithms (SVM, Logistic Regression, Naive Bayes, and
Random Forest Algorithm).This work shows a comparative study on the evaluation of traditional machine
learning. We have found highest classification accuracy for Random Forest Classifier among traditional machine
learning algorithms and 99% accuracy for Logistic Regression.
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