

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 05, May 2024, pp: 1645-1651

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 1645

CLASSIFICATION OF EYE-DISEASE THROUGH IMAGE PROCESSING

AND DEEP LEARNING

Mrs. Ch. Srivatsa1, Bolle Sharath2, Gajula Tharun Kumar3, Sanamandra Joel John4,

Chittumala Nipun Raj5
1Assistant. Professor Cse Dept Ace Engineering College Hyderabad, India.

2,3,4,5Cse Ace Engineering College Hyderabad, India.

 DOI: https://www.doi.org/10.58257/IJPREMS34426

ABSTRACT

"Classification of Eye-Disease through Image processing and Deep Learning” is to develop a machine through deep

learning algorithms to classify the eye diseases. Now-a-days everyone is suffering from different eye diseases which

will lead to blindness. If we find the eye disease in the early stages we can easily cure the disease. Every eye disease

will have different images if we can find the correct disease of our eye we can detect and we can cure the disease. We

are using the CNN (Convolutional Neural Network) to classify the images. This CNN architecture will help to classify

the large data set images.

1. INTRODUCTION

Introducing "Classification of Eye-Disease through image processing and deep learning." Eye diseases represent a

significant public health concern worldwide which is effecting the millions of people.To address these challenges, there

is a growing interest in leveraging advancements in image processing and deep learning techniques to develop automated

systems. In this paper, we present a novel approach that combines image processing methods with deep learning

architectures for the classification of eye disease images. We are using the preprocessed eye disease data set to classify

the eye disease. The data set contains the different eye diseases like Acrima,Glaucoma,normal eye, cataract,retina

disease. By leveraging a diverse dataset comprising images of various eye conditions, our proposed framework aims to

achieve high accuracy in disease classification while minimizing false positives and false negatives.

2. OBJECTIVES

Develop a comprehensive understanding of the various types of eye diseases and their manifestations in retinal images.

Compare the performance of the proposed approach with existing methods and benchmarks, highlighting its advantages

in terms of accuracy, computational efficiency, and generalization capability.

Providing the highest accuracy rate and the least error rate of the classification.

3. PROBLEM STATEMENT

Despite significant advancements in medical imaging technology, the diagnosis of eye diseases remains a challenging

task, often relying heavily on manual examination by trained ophthalmologists. This manual process is not only time-

consuming but also prone to subjectivity and human error, leading to delays in diagnosis and potentially affecting patient

outcomes. Additionally, the increasing prevalence of eye diseases worldwide further exacerbates the demand for

efficient and accurate diagnostic tools. In recent years, advances in image processing techniques and deep learning

algorithms have shown promising results in medical image analysis, including the detection and classification of eye

diseases. By leveraging these technologies, it is possible to develop automated systems capable of analyzing retinal

images and accurately identifying different eye conditions, such as diabetic retinopathy, glaucoma, cataracts.

4. PROPOSED SYSTEM

We are proposing increasing the output accuracy by using the deep CNN architectures to classify the eye diseases. The

classification of eye disease will be so much helpful for the doctors to cure the eye disease. We are using the kaggle data

set which contains the different types of eye diseases. By taking that data set and combing with the deep CNN

architecture we can get maximum accuracy of the classification.

5. HARDWARE AND SOFTWARE REQUIREMENTS

HARDWARE REQUIREMENTS:

• Processor – Intel i3 9th gen

• RAM – 4 GB (min)

• Hard Disk – 50 GB

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 05, May 2024, pp: 1645-1651

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 1646

SOFTWARE REQUIREMENTS:

• Operating system – Windows 10, 11, mac os

• Coding Language – Python

6. TECHNOLOGY DESCRIPTION

Python

Python is a high-level, interpreted programming language known for its simplicity and versatility. Python emphasizes

readability and ease of use, making it an excellent choice for beginners and experienced programmers alike. It features

a clear and concise syntax, with significant whitespace used for code indentation, enhancing readability. Python supports

multiple programming paradigms, including procedural, object-oriented, and functional programming, providing

flexibility for various development tasks. It boasts a vast ecosystem of libraries and frameworks for diverse applications,

such as web development, data analysis, machine learning, automation, and scientific computing. Python's popularity

continues to grow, driven by its user-friendly nature, extensive community support, and wide adoption across industries.

7. PACKAGES USED

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Matplotlib

is mainly used for plotting the plots, including line plots, scatter plots, bar charts, histograms, and more.

PyTorch is an open-source machine learning library primarily developed by Facebook's AI Research lab (FAIR). It

provides a flexible and dynamic computational graph structure, making it suitable for deep learning and neural network

research. PyTorch uses dynamic computation graphs, allowing for more flexible and intuitive model development

compared to static graph frameworks.

Torchvision is a package built on top of PyTorch, specifically designed for computer vision tasks.

8. ALGORITHM

Loading Data: Loading the data set by providing the path of the data set.

Train-Test Split: Dividing the data set into two parts one is training data set and test data set

CNN Model: This CNN model will classify the images into their categories.

Confusion Matrix: we visualize the confusion matrix to understand the model's performance across different classes.

Metric Calculation: Finally, we calculate and print the accuracy, precision, recall, and F1 score.

Coding:

import matplotlib.pyplot as plt

import numpy as np

import seaborn as sn

import torch

import torch.nn as nn

import torchvision

from torch.utils.data import DataLoader

from torchvision import datasets, transforms

from torchvision.utils import make_grid

from torchmetrics import Accuracy, ConfusionMatrix, Precision, Recall, F1Score

from tqdm import tqdm

def load_data():

t = transforms.Compose(

[

transforms.ToTensor(),

transforms.Resize((256, 256)),

]

)

return datasets.ImageFolder(root="C:\DATASET_101", transform=t)

dataset = load_data()

dataset

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 05, May 2024, pp: 1645-1651

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 1647

number of classes

NUMBER_OF_CLASSES = len(set(dataset.targets))

print(f"Number of classes: {NUMBER_OF_CLASSES}")

def display_image(image, label):

print(f"Label : {dataset.classes[label]}")

plt.imshow(image.permute(1, 2, 0))

display the first image in the dataset

display_image(*dataset[0])

def train_test_split(dataset, train_size, random_state=42):

train_size = int(train_size * len(dataset))

test_size = len(dataset) - train_size

seed = torch.Generator().manual_seed(random_state)

train_dataset, test_dataset = torch.utils.data.random_split(

dataset, [train_size, test_size], generator=seed

)

return train_dataset, test_dataset

train_dataset, test_dataset = train_test_split(dataset, 0.8)

batch_size = 32

train_dataloader = DataLoader(

train_dataset, batch_size=batch_size, shuffle=True, num_workers=4

)

test_dataloader = DataLoader(

test_dataset, batch_size=batch_size, shuffle=False, num_workers=4

)

def show_batch(data_loader):

"""Plot images grid of single batch"""

for images, labels in data_loader:

fig, ax = plt.subplots(figsize=(16, 12))

ax.set_xticks([])

ax.set_yticks([])

ax.imshow(make_grid(images, nrow=16).permute(1, 2, 0))

break

show_batch(train_dataloader)

class CNN(nn.Module):

def __init__(self, NUMBER_OF_CLASSES):

super(CNN, self).__init__()

self.conv_layers = nn.Sequential(

nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=2),

nn.BatchNorm2d(16),

nn.LeakyReLU(),

nn.MaxPool2d(kernel_size=2, stride=2),

nn.Conv2d(in_channels=16, out_channels=32,

kernel_size=3, stride=2),

nn.BatchNorm2d(32),

nn.LeakyReLU(),

nn.MaxPool2d(kernel_size=2, stride=2),

nn.Conv2d(in_channels=32, out_channels=64,

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 05, May 2024, pp: 1645-1651

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 1648

kernel_size=3, stride=2),

nn.BatchNorm2d(64),

nn.LeakyReLU(),

nn.MaxPool2d(kernel_size=2, stride=2),

)

self.dense_layers = nn.Sequential(

nn.Dropout(0.2),

nn.Linear(64 * 3 * 3, 128),

nn.ReLU(),

nn.Dropout(0.2),

nn.Linear(128, NUMBER_OF_CLASSES),

)

def forward(self, x):

x = self.conv_layers(x)

x = x.view(x.size(0), -1)

x = self.dense_layers(x)

return x

model = CNN(NUMBER_OF_CLASSES)

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters())

device = "cpu"

if torch.cuda.is_available():

device = "cuda:0"

elif torch.backends.mps.is_available():

device = "mps"

A function to encapsulate the training loop

def batch_gd(model, criterion, optimizer, train_loader, test_loader, epochs):

model.to(device)

train_losses = np.zeros(epochs)

test_losses = np.zeros(epochs)

accuracy = Accuracy(task="multiclass",

num_classes=6).to(device)

for epoch in range(epochs):

train_loss = []

for inputs, targets in tqdm(train_loader, desc=f'Training... Epoch: {epoch + 1}/{epochs}'):

move data to GPU

inputs, targets = inputs.to(device), targets.to(device)

zero the parameter gradients

optimizer.zero_grad()

Forward pass

outputs = model(inputs)

loss = criterion(outputs, targets)

Backward and optimize

loss.backward()

optimizer.step()

train_loss.append(loss.item())

Get train loss

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 05, May 2024, pp: 1645-1651

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 1649

train_loss = np.mean(train_loss)

Train accuracy

train_accuracy = accuracy(outputs, targets)

test_loss = []

for inputs, targets in tqdm(test_loader, desc=f'Validating... Epoch: {epoch + 1}/{epochs}'):

inputs, targets = inputs.to(device), targets.to(device)

outputs = model(inputs)

loss = criterion(outputs, targets)

test_loss.append(loss.item())

Get test loss

test_loss = np.mean(test_loss)

Test accuracy

test_accuracy = accuracy(outputs, targets)

Save losses

train_losses[epoch] = train_loss

test_losses[epoch] = test_loss

print(f"Epoch {epoch+1}/{epochs}:")

print(

f"Train Loss: {train_loss:.2f}, Train Accuracy: {train_accuracy:.2f}")

print(

f"Test Loss: {test_loss:.2f}, Test Accuracy: {test_accuracy:.2f}")

print('-'*30)

return train_losses, test_losses

train_losses, test_losses = batch_gd(

model, criterion, optimizer, train_dataloader, test_dataloader, epochs=10

)

plt.title("Losess")

plt.plot(train_losses, label="Train loss")

plt.plot(test_losses, label="Test loss")

plt.xlabel("Epoch")

plt.ylabel("Loss")

plt.legend()

plt.show()

y_pred_list = []

y_true_list = []

with torch.no_grad():

for inputs, targets in test_dataloader:

inputs, targets = inputs.to(device), targets.to(device)

outputs = model(inputs)

predections = torch.max(outputs, 1)

y_pred_list.append(targets.cpu().numpy())

y_true_list.append(predections.cpu().numpy())

targets = torch.tensor(np.concatenate(y_true_list))

preds = torch.tensor(np.concatenate(y_pred_list))

confmat = ConfusionMatrix(task="multiclass", num_classes=NUMBER_OF_CLASSES)

cm = confmat(preds, targets)

sn.heatmap(cm, annot=True, fmt=".0f")

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 05, May 2024, pp: 1645-1651

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 1650

plt.show()

accuracy = Accuracy(task="multiclass", num_classes=NUMBER_OF_CLASSES).to(device)

accuracy = accuracy(preds, targets)

print(f"Accuracy: {100 * accuracy:.2f}%")

precision = Precision(task="multiclass", average='micro', num_classes=NUMBER_OF_CLASSES)

precision = precision(preds, targets)

print(f"Precision: {100 * precision:.2f}%")

recall = Recall(task="multiclass", average='micro', num_classes=NUMBER_OF_CLASSES)

recall = recall(preds, targets)

print(f"Recall: {100 * recall:.2f}%")

f1 = F1Score(task="multiclass", num_classes=NUMBER_OF_CLASSES)

f1 = f1(preds, targets)

print(f"F1 Score: {100 * f1:.2f}%")

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 05, May 2024, pp: 1645-1651

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 1651

9. TESTING

Collect a diverse and representative dataset of eye images containing various types and stages of diseases.

Preprocess the images to standardize their size, format, and quality. Common preprocessing techniques include resizing,

normalization, and augmentation to enhance the model's generalization ability. Split the dataset into training, validation,

and testing sets. The training set is used to train the model, the validation set is used to tune hyperparameters and monitor

performance during training, and the testing set is used to evaluate the final performance of the trained model.

Regression Testing: Regression testing ensures that recent code changes or modifications do not adversely affect existing

functionalities of the system. In the context of deep learning, regression testing involves re-running tests on the entire

system after making changes to the model architecture, training procedure, or preprocessing techniques to verify that

previously working functionalities still perform as expected.

Acceptance Testing: Acceptance testing involves testing the system's compliance with specified requirements and user

expectations. In the case of an eye disease classification system, acceptance testing may involve presenting the system

to domain experts, such as ophthalmologists, to evaluate its performance against real-world scenarios and validate its

effectiveness in diagnosing eye diseases accurately.

Performance Testing: Performance testing evaluates the system's responsiveness, scalability, and stability under

different conditions and workloads. For an eye disease classification system, performance testing may involve

measuring the inference speed of the model, memory consumption, and resource utilization to ensure the system can

handle a large number of images efficiently.

10. CONCLUSION

In conclusion, "Classification of eye disease through image processing and deep learning" will classify the data set

containing the different eye diseases which will help the doctors to detect the eye disease at the early stages. By detecting

eye disease at the early stage we can cure the patient from the vision loss. We achieved this by using the deep CNN

architecture. Deep learning models exhibit scalability and generalization capabilities, enabling them to perform

effectively across diverse populations and datasets. With proper training and validation, these models can adapt to

variations in image quality, resolution, and patient demographics, making them versatile tools for diagnosing eye

diseases in different clinical settings worldwide. By this paper we are concluding that we are getting the output accuracy

of 96.14%.

11. REFERENCES

[1] https://ieeexplore.ieee.org/document/9402347

[2] https://ieeexplore.ieee.org/document/10242558

[3] https://ieeexplore.ieee.org/document/10125593

[4] https://ieeexplore.ieee.org/document/10417352

[5] https://ieeexplore.ieee.org/document/9783206

https://ieeexplore.ieee.org/document/9402347
https://ieeexplore.ieee.org/document/10242558
https://ieeexplore.ieee.org/document/10125593
https://ieeexplore.ieee.org/document/10417352
https://ieeexplore.ieee.org/document/9783206

