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ABSTRACT 

"Classification of Eye-Disease through Image processing and Deep Learning” is to develop a machine through deep 

learning algorithms to classify the eye diseases. Now-a-days everyone is suffering from different eye diseases which 

will lead to blindness. If we find the eye disease in the early stages we can easily cure the disease. Every eye disease 

will have different images if we can find the correct disease of our eye we can detect and we can cure the disease. We 

are using the CNN (Convolutional Neural Network) to classify the images. This CNN architecture will help to classify 

the large data set images.  

1. INTRODUCTION 

Introducing "Classification of Eye-Disease through image processing and deep learning." Eye diseases represent a 

significant public health concern worldwide which is effecting the millions of people.To address these challenges, there 

is a growing interest in leveraging advancements in image processing and deep learning techniques to develop automated 

systems. In this paper, we present a novel approach that combines image processing methods with deep learning 

architectures for the classification of eye disease images. We are using the preprocessed eye disease data set to classify 

the eye disease. The data set contains the different eye diseases like Acrima,Glaucoma,normal eye, cataract,retina 

disease. By leveraging a diverse dataset comprising images of various eye conditions, our proposed framework aims to 

achieve high accuracy in disease classification while minimizing false positives and false negatives. 

2. OBJECTIVES  

Develop a comprehensive understanding of the various types of eye diseases and their manifestations in retinal images. 

Compare the performance of the proposed approach with existing methods and benchmarks, highlighting its advantages 

in terms of accuracy, computational efficiency, and generalization capability. 

Providing the highest accuracy rate and the least error rate of the classification.                  

3. PROBLEM STATEMENT 

Despite significant advancements in medical imaging technology, the diagnosis of eye diseases remains a challenging 

task, often relying heavily on manual examination by trained ophthalmologists. This manual process is not only time-

consuming but also prone to subjectivity and human error, leading to delays in diagnosis and potentially affecting patient 

outcomes. Additionally, the increasing prevalence of eye diseases worldwide further exacerbates the demand for 

efficient and accurate diagnostic tools. In recent years, advances in image processing techniques and deep learning 

algorithms have shown promising results in medical image analysis, including the detection and classification of eye 

diseases. By leveraging these technologies, it is possible to develop automated systems capable of analyzing retinal 

images and accurately identifying different eye conditions, such as diabetic retinopathy, glaucoma, cataracts. 

4. PROPOSED SYSTEM 

We are proposing increasing the output accuracy by using the deep CNN architectures to classify the eye diseases. The 

classification of eye disease will be so much helpful for the doctors to cure the eye disease. We are using the kaggle data 

set which contains the different types of eye diseases. By taking that data set and combing with the deep CNN 

architecture we can get maximum accuracy of the classification.  

5. HARDWARE AND SOFTWARE REQUIREMENTS 

HARDWARE REQUIREMENTS: 

• Processor – Intel i3 9th gen 

• RAM – 4 GB (min)  

• Hard Disk – 50 GB 
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SOFTWARE REQUIREMENTS: 

• Operating system – Windows 10, 11, mac os 

• Coding Language – Python 

6. TECHNOLOGY DESCRIPTION  

Python 

Python is a high-level, interpreted programming language known for its simplicity and versatility. Python emphasizes 

readability and ease of use, making it an excellent choice for beginners and experienced programmers alike. It features 

a clear and concise syntax, with significant whitespace used for code indentation, enhancing readability. Python supports 

multiple programming paradigms, including procedural, object-oriented, and functional programming, providing 

flexibility for various development tasks. It boasts a vast ecosystem of libraries and frameworks for diverse applications, 

such as web development, data analysis, machine learning, automation, and scientific computing. Python's popularity 

continues to grow, driven by its user-friendly nature, extensive community support, and wide adoption across industries.                 

7. PACKAGES USED 

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Matplotlib 

is mainly used for plotting the plots, including line plots, scatter plots, bar charts, histograms, and more. 

PyTorch is an open-source machine learning library primarily developed by Facebook's AI Research lab (FAIR). It 

provides a flexible and dynamic computational graph structure, making it suitable for deep learning and neural network 

research. PyTorch uses dynamic computation graphs, allowing for more flexible and intuitive model development 

compared to static graph frameworks. 

Torchvision is a package built on top of PyTorch, specifically designed for computer vision tasks. 

8. ALGORITHM 

Loading Data: Loading the data set by providing the path of the data set. 

Train-Test Split: Dividing the data set into two parts one is training data set and test data set 

CNN Model: This CNN model will classify the images into their categories. 

Confusion Matrix: we visualize the confusion matrix to understand the model's performance across different classes. 

Metric Calculation: Finally, we calculate and print the accuracy, precision, recall, and F1 score. 

Coding: 

import matplotlib.pyplot as plt 

import numpy as np 

import seaborn as sn 

import torch 

import torch.nn as nn 

import torchvision 

from torch.utils.data import DataLoader 

from torchvision import datasets, transforms 

from torchvision.utils import make_grid 

from torchmetrics import Accuracy, ConfusionMatrix, Precision, Recall, F1Score 

from tqdm import tqdm 

def load_data(): 

t = transforms.Compose( 

[ 

transforms.ToTensor(), 

transforms.Resize((256, 256)), 

] 

) 

return datasets.ImageFolder(root="C:\DATASET_101", transform=t) 

dataset = load_data() 

dataset 
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# number of classes 

NUMBER_OF_CLASSES = len(set(dataset.targets)) 

print(f"Number of classes: {NUMBER_OF_CLASSES}") 

def display_image(image, label): 

print(f"Label : {dataset.classes[label]}") 

plt.imshow(image.permute(1, 2, 0)) 

# display the first image in the dataset 

display_image(*dataset[0]) 

def train_test_split(dataset, train_size, random_state=42): 

train_size = int(train_size * len(dataset)) 

test_size = len(dataset) - train_size 

seed = torch.Generator().manual_seed(random_state) 

train_dataset, test_dataset = torch.utils.data.random_split( 

dataset, [train_size, test_size], generator=seed 

) 

return train_dataset, test_dataset 

train_dataset, test_dataset = train_test_split(dataset, 0.8) 

batch_size = 32 

train_dataloader = DataLoader( 

train_dataset, batch_size=batch_size, shuffle=True, num_workers=4 

) 

test_dataloader = DataLoader( 

test_dataset, batch_size=batch_size, shuffle=False, num_workers=4 

) 

def show_batch(data_loader): 

"""Plot images grid of single batch""" 

for images, labels in data_loader: 

fig, ax = plt.subplots(figsize=(16, 12)) 

ax.set_xticks([]) 

ax.set_yticks([]) 

ax.imshow(make_grid(images, nrow=16).permute(1, 2, 0)) 

break 

show_batch(train_dataloader) 

class CNN(nn.Module): 

def __init__(self, NUMBER_OF_CLASSES): 

super(CNN, self).__init__() 

self.conv_layers = nn.Sequential( 

nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=2), 

nn.BatchNorm2d(16), 

nn.LeakyReLU(), 

nn.MaxPool2d(kernel_size=2, stride=2), 

nn.Conv2d(in_channels=16, out_channels=32, 

kernel_size=3, stride=2), 

nn.BatchNorm2d(32), 

nn.LeakyReLU(), 

nn.MaxPool2d(kernel_size=2, stride=2), 

nn.Conv2d(in_channels=32, out_channels=64, 
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kernel_size=3, stride=2), 

nn.BatchNorm2d(64), 

nn.LeakyReLU(), 

nn.MaxPool2d(kernel_size=2, stride=2), 

) 

self.dense_layers = nn.Sequential( 

nn.Dropout(0.2), 

nn.Linear(64 * 3 * 3, 128), 

nn.ReLU(), 

nn.Dropout(0.2), 

nn.Linear(128, NUMBER_OF_CLASSES), 

) 

def forward(self, x): 

x = self.conv_layers(x) 

x = x.view(x.size(0), -1) 

x = self.dense_layers(x) 

return x 

model = CNN(NUMBER_OF_CLASSES) 

criterion = nn.CrossEntropyLoss() 

optimizer = torch.optim.Adam(model.parameters()) 

device = "cpu" 

if torch.cuda.is_available(): 

device = "cuda:0" 

elif torch.backends.mps.is_available(): 

device = "mps" 

# A function to encapsulate the training loop 

def batch_gd(model, criterion, optimizer, train_loader, test_loader, epochs): 

model.to(device) 

train_losses = np.zeros(epochs) 

test_losses = np.zeros(epochs) 

accuracy = Accuracy(task="multiclass", 

num_classes=6).to(device) 

for epoch in range(epochs): 

train_loss = [] 

for inputs, targets in tqdm(train_loader, desc=f'Training... Epoch: {epoch + 1}/{epochs}'): 

# move data to GPU 

inputs, targets = inputs.to(device), targets.to(device) 

# zero the parameter gradients 

optimizer.zero_grad() 

# Forward pass 

outputs = model(inputs) 

loss = criterion(outputs, targets) 

# Backward and optimize 

loss.backward() 

optimizer.step() 

train_loss.append(loss.item()) 

# Get train loss 
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train_loss = np.mean(train_loss) 

# Train accuracy 

train_accuracy = accuracy(outputs, targets) 

test_loss = [] 

for inputs, targets in tqdm(test_loader, desc=f'Validating... Epoch: {epoch + 1}/{epochs}'): 

inputs, targets = inputs.to(device), targets.to(device) 

outputs = model(inputs) 

loss = criterion(outputs, targets) 

test_loss.append(loss.item()) 

# Get test loss 

test_loss = np.mean(test_loss) 

# Test accuracy 

test_accuracy = accuracy(outputs, targets) 

# Save losses 

train_losses[epoch] = train_loss 

test_losses[epoch] = test_loss 

print(f"Epoch {epoch+1}/{epochs}:") 

print( 

f"Train Loss: {train_loss:.2f}, Train Accuracy: {train_accuracy:.2f}") 

print( 

f"Test Loss: {test_loss:.2f}, Test Accuracy: {test_accuracy:.2f}") 

print('-'*30) 

return train_losses, test_losses 

train_losses, test_losses = batch_gd( 

model, criterion, optimizer, train_dataloader, test_dataloader, epochs=10 

) 

plt.title("Losess") 

plt.plot(train_losses, label="Train loss") 

plt.plot(test_losses, label="Test loss") 

plt.xlabel("Epoch") 

plt.ylabel("Loss") 

plt.legend() 

plt.show() 

y_pred_list = [] 

y_true_list = [] 

with torch.no_grad(): 

for inputs, targets in test_dataloader: 

inputs, targets = inputs.to(device), targets.to(device) 

outputs = model(inputs) 

predections = torch.max(outputs, 1) 

y_pred_list.append(targets.cpu().numpy()) 

y_true_list.append(predections.cpu().numpy()) 

targets = torch.tensor(np.concatenate(y_true_list)) 

preds = torch.tensor(np.concatenate(y_pred_list)) 

confmat = ConfusionMatrix(task="multiclass", num_classes=NUMBER_OF_CLASSES) 

cm = confmat(preds, targets) 

sn.heatmap(cm, annot=True, fmt=".0f") 
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plt.show() 

accuracy = Accuracy(task="multiclass", num_classes=NUMBER_OF_CLASSES).to(device) 

accuracy = accuracy(preds, targets) 

print(f"Accuracy: {100 * accuracy:.2f}%") 

precision = Precision(task="multiclass", average='micro', num_classes=NUMBER_OF_CLASSES) 

precision = precision(preds, targets) 

print(f"Precision: {100 * precision:.2f}%") 

recall = Recall(task="multiclass", average='micro', num_classes=NUMBER_OF_CLASSES) 

recall = recall(preds, targets) 

print(f"Recall: {100 * recall:.2f}%") 

f1 = F1Score(task="multiclass", num_classes=NUMBER_OF_CLASSES) 

f1 = f1(preds, targets) 

print(f"F1 Score: {100 * f1:.2f}%") 
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9. TESTING 

Collect a diverse and representative dataset of eye images containing various types and stages of diseases. 

Preprocess the images to standardize their size, format, and quality. Common preprocessing techniques include resizing, 

normalization, and augmentation to enhance the model's generalization ability. Split the dataset into training, validation, 

and testing sets. The training set is used to train the model, the validation set is used to tune hyperparameters and monitor 

performance during training, and the testing set is used to evaluate the final performance of the trained model. 

Regression Testing: Regression testing ensures that recent code changes or modifications do not adversely affect existing 

functionalities of the system. In the context of deep learning, regression testing involves re-running tests on the entire 

system after making changes to the model architecture, training procedure, or preprocessing techniques to verify that 

previously working functionalities still perform as expected. 

Acceptance Testing: Acceptance testing involves testing the system's compliance with specified requirements and user 

expectations. In the case of an eye disease classification system, acceptance testing may involve presenting the system 

to domain experts, such as ophthalmologists, to evaluate its performance against real-world scenarios and validate its 

effectiveness in diagnosing eye diseases accurately. 

Performance Testing: Performance testing evaluates the system's responsiveness, scalability, and stability under 

different conditions and workloads. For an eye disease classification system, performance testing may involve 

measuring the inference speed of the model, memory consumption, and resource utilization to ensure the system can 

handle a large number of images efficiently. 

10. CONCLUSION  

In conclusion, "Classification of eye disease through image processing and deep learning" will classify the  data set 

containing the different eye diseases which will help the doctors to detect the eye disease at the early stages. By detecting 

eye disease at the early stage we can cure the patient from the vision loss. We achieved this by using the deep CNN 

architecture. Deep learning models exhibit scalability and generalization capabilities, enabling them to perform 

effectively across diverse populations and datasets. With proper training and validation, these models can adapt to 

variations in image quality, resolution, and patient demographics, making them versatile tools for diagnosing eye 

diseases in different clinical settings worldwide. By this paper we are concluding that we are getting the output accuracy 

of 96.14%. 
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