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ABSTRACT 

In a graph 𝐺, a list assignment 𝐿 is a function that it assigns a list 𝐿(𝑣) of colors to each vertex 𝑣 ∈ 𝑉(𝐺). An (𝐿, 𝑑)∗-

coloring is a mapping 𝛽 that assigns a color 𝛽(𝑣) ∈ 𝐿(𝑣) to each vertex 𝑣 ∈ 𝑉(𝐺) so that at most impropriety 𝑑 

neighbors of 𝑣 are the same color with 𝛽(𝑣). A graph 𝐺 is said to be (𝑘, 𝑑)∗-choosable if it admits an (𝐿, 𝑑)∗-coloring 

for every list assignment 𝐿 with |𝐿(𝑣)| ≥ 𝑘 for all 𝑣 ∈ 𝑉(𝐺). In this paper, we prove that every planar graph with 

neither adjacent triangles nor 7 -cycles is (3,1)∗-choosable. In 2016, Min Chen, Andre Raspaud and Weifan Wang 

proved that every planar graph with neither adjacent triangles nor 6 -cycles is (3,1)∗-choosable. 

Keywords: Planar graphs, improper choosability, cycle. 

1. INTRODUCTION 

A 𝑘-coloring of 𝐺 is a mapping 𝛽 from 𝑉(𝐺) to a color set {1,2, ⋯ , 𝑘} such that 𝛽(𝑥) ≠ 𝛽(𝑦) for any adjacent 

vertices 𝑥 and 𝑦. A graph is 𝑘 − colorabe if it has a 𝑘-coloring. Cowen et al.(1986) considered defective coloring of 

graphs. A graph 𝐺 is said to be 𝑑-improper 𝑘 - colorable, or simply, (𝑘, 𝑑)∗ − colorable, if the vertices of 𝐺 can be 

colored with 𝑘 colors in such a way that vertex has at most 𝑑 neighbors receiving the same color as itself. Clearly, a 

(𝑘, 0)∗ − coloring is an ordinary proper 𝑘 - coloring. 

A list assignment of 𝐺 is a function 𝐿 that assigns a list 𝐿(𝑣) of col- or 𝛽(𝑣) ∈ 𝐿(𝑣) to each vertex 𝑣 ∈ 𝑉(𝐺) so that at 

most 𝑑 neighbors of 𝑣 receive color 𝛽(𝑣). A graph is 𝑘-choosable with impropriety of integer 𝑑, or simply (𝑘, 𝑑)∗ − 

choosable, if there exists an (𝐿, 𝑑)∗-coloring for every is just the ordinary 𝑘-choosability introduced by Erdős et al. 

(1979) and independently by Vizing (1976). A famous and classic result given by Thomassen (1994) is that every 

planar graph is (5,0)∗-choosable. However, Voigt (1993) showed that not all planar graphs are (4,0)∗-choosable by 

establishing a non- (4,0)∗-choosable planar graph. 

In 1999, 𝑆‾ rekovski(1999a) and Eaton and Hull (1999) independently introduced the concept of list improper coloring. 

They showed that planar graphs are (3,2)∗-choosable and outerplanar graphs are (2,2)∗-choosable. They are both 

improvement of the results shown in Cowen et al. (1986) which say that planar graphs are (3,2)∗-colorable and 

outerplanar graph𝑠 are (2,2)∗ colorable. Note that there exist non- (2,2)∗-colorable planar graphs and non- (2,1)∗-

colorable outerplanar graphs which were constructed in Cowen et al (1986). Let 𝑔(𝐺) denote the girth of a graph 𝐺, 

i.e., the length of a shortest cycle in 𝐺. The (𝑘, 𝑑)∗-choosability of planar graph 𝐺 with given 𝑔(𝐺) has been 

investigated by  Srekovski 
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (2000). He proved that every planar graph 𝐺 is (2,1)∗-choosable if 𝑔(𝐺) ≥ 9, (2,2)∗-

choosable if 𝑔(𝐺) ≥ 7, (2,3)∗-choosable if 𝑔(𝐺) ≥ 6, and (2, 𝑑)∗-choosable if 𝑑 ≥ 4 and 𝑔(𝐺) ≥ 5. The first two 

results were strengthened by Havet and Sereni (2006) who proved that every planar graph 𝐺 is (2,1)∗-choosable if 

𝑔(𝐺) ≥ 8 and (2,2)∗-choosable if 𝑔(𝐺) ≥ 6. Recently, Cushing and Kierstesad (2010) proved that every planar graph 

is (4,1)∗-choosable. So it would be interesting to investigate the sufficient conditions of (3,1)∗-choosability of 

subfamilies of planar graphs where some families of cycles are forbidden. Slrekowski prowed in Srekovski (1999b) 

that every planar graph without 3 -cycles is (3,1)∗-choosable. Lih et al.(2001) proved that planar graphs without 4 - 

and 𝑙-cycles are (3,1)∗-choosable, where 𝑙 ∈ {5,6,7}. Later, Dong and Xu (2009) proved that planar graphs without 4- 

and 𝑙-cycles are (3,1)∗-choosable, where 𝑙 ∈ {8,9}. These two results were improved further by Wang and Xu(2013) 

who showed that every planar graph without 4 -cycles is (3,1)∗-choosable. More recently, Chen and Raspaud (2014) 

proved that every planar with neither adjacent 4 -cycles nor 4 -cycles adjacent to 3-cycles is (3,1)∗-choosable. This 

absorbs above results in Lih et al. (2001), Dong and Xu (2009), Wang and Xu (2013). Then, Min Chen, Andre 

Raspaud and Weifan Wang (2016) prowed that every planar graph with neither adjacent triangles nor 6 -cycles is 

(3,1)∗-choosable. 

Theorem 1.1 Every planar gruph with neither adjacent triangles nor 7. cycles is (3,1)∗-choosable. 

The proof of Theorem 1.1 is done in the section 3. 

2 Notation 
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All graphs considered in this paper are finite, simple and undirected without multiple exges. Call a graph 𝐺 planar if it 

can be embedded into the plane so that its edges meet only at their ends. Any such particular embedding of a planar 

graph is called a plane graph. For a plane graph 𝐺, we tise 𝑉, 𝐸, 𝐹, Δ and 𝛿(𝑉(𝐺), 𝐸(𝐺), 𝐹(𝐺), Δ(𝐺), 𝛿(𝐺)) to denote 

its vertex set, edge set, face set, maximum degree and minimum degree, respectively. For a vertex 𝑣 ∈ 𝑉, the degree 

of 𝑣 in 𝐺, denoted by 𝑑𝐺(𝑣), or simply 𝑑(𝑣), is the number of edges incident with 𝑣 in 𝐺. |𝑉(𝐺)| and |𝐸(𝐺)| are order 

and size. The neighborhood of 𝑣 in 𝐺, denoted by 𝑁𝐺(𝑣), or simply 𝑁(𝑣), consists of all vertices adjacent to 𝑣 in 𝐺. 

Call 𝑣 a 𝑘-vertex, or a 𝑘+-vertex, or a 𝑘−-vertex if 𝑑(𝑣) = 𝑘, or 𝑑(𝑣) ≥ 𝑘, or 𝑑(𝑣) ≤ 𝑘, respectively. A similar 

notation will be used for cycles and faces. For a face 𝑓 ∈ 𝐹, 

the number of edges of the boundary of 𝑓 (where cut edge, if any, is counted twice), denoted by 𝑑(𝑓), is called the 

degree of 𝑓. Analogously, the notations above for vertices will be applied to faces. We write 𝑓 = [𝑣1𝑣2 ⋯ 𝑣𝑘 ∣ if 

𝑣1, 𝑣2, ⋯ , 𝑣𝑘 are consecutive vertices on 𝑓 in a cyclic order, and say that 𝑓 is a (𝑑(𝑣1), 𝑑(𝑣2), ⋯ , 𝑑(𝑣𝑘))-face. Next, 

let 𝑓𝑖 be the face with 𝑣𝑣𝑖 and 𝑣𝑣𝑖+1 as two boundary edges for 𝑖 = 1,2, ⋯ , 𝑑(𝑣), where indices are taken modulo 

𝑑(𝑣) and define 𝑑(𝑣) + 1 = 1. Let 𝑣 be a vertex, and 𝑣 is a 3 − 𝑣𝑒𝑟𝑡𝑒𝑥 in 𝐺 such that the three neighbors vertices 

adjacent with 𝑣. An edge 𝑥𝑦 is called a (𝑑(𝑥), 𝑑(𝑦))-edge, and 𝑥 is called a 𝑑(𝑥)-neighbor of 𝑦. A 𝑘 − cycle is a 

cycle of length 𝑘. In this paper, a 3 -face is often called a triangle. Call a vertex or an edge triangular if it is incident 

with a triangle. Otherwise, a vertex or an edge iso-triangular if it is not incident with a triangle but its neighbor vertex 

is incident with triangle. Then 4-face is often called a quadrilateral. Two cycles or two faces are intersecting if they 

have at least one vertex in common; and are adjacent if they have at least one edge in common. Again, 4-face is called 

a quadrilateral in which two triangles are adjacent. 

We define the following notation: 

 Let 𝑢 be a 4 -vertex. If 𝑢 is incident with 𝑓1, 𝑓2, 𝑓3 and 𝑓4 so that 𝑓1 = |𝑢𝑢1𝑢2| = (3,4, 5+)-face and then 𝑑(𝑓3) =

4 and 𝑑(𝑓2) = 𝑑(𝑓4) = 8+ −face. It is called a 4-light vertex. Shown in Figure 1. 

 8 + −  face   8+-face 

 

Figure 1: 

Definition 2.1 Let 𝑓 be 3 -face such that 𝑓 = [𝑢𝜓1𝑢2] and ef be an cdge incident with 𝑓. 

i.e., 𝑒um1
, 𝜖vu2

, 𝑒u1𝑤1
 can be written by 𝑒𝑓. 

Definition 2.2 - A s-verter is said to be poor if it is incident with one 3-face and two 4 -faces. Then it is colled 3 -

poor. 

 Let 𝑢 be a 4 -vertex and 𝑓 = [𝜓𝑢1𝑢2 ∣ be a 9 -face. If 𝑢 is incident with one 3-fare, one 4-face and one 5-face 

adjacrnt with ef and another is 6 -face, then it is said to be 4 -poor. 

(OR) 

 A 4 -vertex is said to be poor if it is incident with one 3 -face and tuo of 𝑒𝑓 incident with one 4 -face and one 5 -

face and another is 6 -face. Then it is called 4-poor. 

 Let 𝑢 be a 5-vertex and 𝑓 = [𝜋𝑢1𝑢2 ∣ be a 9-face. If 𝑢 is incident with one 3 -face and both one 4 -face and one 5 

-face aljacent with 𝑒𝑓 and others' two are 6+ − ∫ 𝑎𝑐𝑒 and 5+ − ∫ 𝑎𝑐𝑒, then it is said to be 5 − 𝑝𝑜𝑜𝑟. 

(𝑂𝑅) 

A 5-vertex is said to be poor if it is incident with one 3-face and tuo of ef incident with one 4-face and one 5-face 

and others are incident with 6+-face and 5+-face. Then it is called 5 -poor. 

Definition 2.3 - A 3 -vertex is suid to be semi-poor if it is incident with three 4 -faces. Then it is called 3 -semi-

poor. 

 A 4-vertex is said to be semi-poor if it is incident with one 3 -face adjacent to one 4-face and one 4-face adjacent 

to one $-face. Then it is also called a semi-poor-I verter. 
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 A 4-vertex is said to be semi-poor if it is incident with one 3 -face adjacent to one 4-face and one 4-face adjacent 

to one 4-face. Then it is also called a semi-poor-II vertex. 

 A f-vertex is said to be semi-poor if it is incident with one 3 -face adjacent to one 5-face and one f-face adjacent 

to one 9 -face. Then it is also called a semi-poor-III vertex. 

 A 4-verter is said to be semi-poor if it is incident with one 3-face adjacent to one 5-face and one 4-face adjacent to 

one 4-face. Then it is also called a semi-poor-IV vertex. 

Definition 2.4 - A S-vertex is said to be full-poor if it is incident with one 3 -face, one 5 -face and 8+-face. Then it 

is culled 3 -full-poor. 

 A 4-verter is said to be full-poor if it is incident with one 4 -face adjacent to one 3-face and one 4-face adjacent to 

one 3-face. Then it is also called a full-poor-I vertex. 

 A f-vertex is said to be full-poor if it is incident with one f-face adjacent to one 3 -face and one 4-face adjacent to 

one 4-face. Then it is also called a full-poor-II vertex. 

 A f-verter is said to be full-poor if it is incident with one 4 -face adjacent to one 4-face and one 4-face adjacent to 

one 4 -face. Then it is also called a full-poor-III verter. 

 

 

Theorem 2.5 (Chen [1]). Every planar graph neither adjacent triangle nor 6 cycle is (3,1)∗-choosable. 

Theorem 2.6 (Chen [2]). Every planar gruph without &-cycles adjacent to 3. and 4-cycles is (3,1)+-choosable. 

Lemma 2.7 (Lih, Wang, Zhang [9] ). 

(A1) 𝛿(𝐺) ≥ 3. 

(A 2) No two adjacent s-vertices. 

Lemma 2.8 Let 𝑓 be (3,4,5)-face. Then all vertices of 𝑓 are poor. 

Proof: Let 𝑓 = [𝑥𝑦𝑧] = (3,4,5)-face and then 𝑥1 ∈ 𝑁(𝑥), 𝑦1 , 𝑦2 ∈ 𝑁(𝑦) and 𝑧1, 𝑧2, 𝑧3 ∈ 𝑁(𝑧). Suppose to the contrary 
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that there is no poor vertex of 𝑓 in 𝐺. Let 𝐺′ = {𝑥, 𝑦, 𝑧, 𝑥1, 𝑦1 , 𝑦2, 𝑧1, 𝑧2, 𝑧3}. By minimality of 𝐺, suppose that 𝐺 − 𝐺′ 

has an (𝐿, 1)∗-coloring of 𝛽. 

First, for 𝑑(𝑥) = 3, without loss of generality, let 𝑥𝑥1𝑦1𝑦 be a quadrilateral and 𝑒𝑥= be not incident with 4 -face. We 

may prowide the colors 𝛽(𝑦) = 𝛽(𝑥1) = 𝛽(𝑧1) = 1 and 𝛽(𝑦1) = 𝛽(𝑧) = 2. We must have the color 𝛽(𝑥) with 

𝐿(𝑥) ∖ {𝛽(𝑦)⋃𝛽(𝑧)⋃𝛽(𝑥1)}. So, we choose the color 𝛽(𝑥) with 3. If we recolor 𝛽(𝑥1) with 𝐿(𝑥1) ∖ {𝛽(𝑦1)⋃𝛽(𝑥1
′ )}, 

then we will get the color of the same 𝛽(𝑥). If we recolor 𝛽(𝑥1) with 3 , we can exchange the colors 𝛽(𝑥) and 𝛽(𝑧). 

However, since 𝑒𝑥𝑥 is not incident with 4 -face, it means that it is incident with 8 -face. So, 𝑦1 and 𝑥1
′  can be adjacent 

to each other. If 𝑦1𝑥1𝑥1
′  is a triangle, we must have the color 𝛽(𝑥1

′ ) with 3 . So, it is impossible for the color 𝛽(𝑥1) 

with 3 . If 𝑦1𝑥1𝑥1
′  is not a triangle, 𝑦1𝑦2 can be a triangle. So, we can assume that the colors 𝛽(𝑥1) and 𝛽(𝑦2) with 3 . 

Since 𝑒𝑥𝑧 is not incident with 4 -face, so 𝑥1
′ ≠ 𝑧1. So, we could have the colors 𝛽(𝑥1

′ ) and 𝛽(𝑧1) are the same. Then 

we change the colors 𝛽(𝑧) and 𝛽(𝑧1). It is contradiction for 𝑥 vertex. 

Secondly; for 𝑑(𝑦) = 4 and 𝑑(𝑧) = 5, we have proved that 𝑥 is a poor vertex. Without loss of generality, we have 

𝑥1𝑥𝑦𝑦1 and 𝑥1𝑥𝑧𝑧1 are quadrilaterals and then we cannot have both 𝑦𝑦1𝑦2 is a triangle and 𝑦𝑦1 ∗ 𝑦2 is a quadrilateral. 

So, we may assume that 𝑧𝑧2𝑧3 is a triangle. Since 𝑒𝑦𝑧 is not incident with 4 − ,5 − ,6-faces. Without loss of 

generality, let 𝐿(𝑥) = 𝐿(𝑦1) = 𝐿(𝑦2) = 𝐿(𝑧1) = {1,2,3}, 𝐿(𝑦) = 𝐿(𝑧2) = {1,2,4}, 𝐿(𝑧) = 𝐿(𝑥1) = {1,3,4} and 

𝐿(𝑧3) = {2,3,4}. If we provide the colors 𝛽(𝑦1) = 𝛽(𝑦2) = 𝛽(𝑧2) = 1, 𝛽(𝑧1) = 3 and 𝛽(𝑦) = 𝛽(𝑧3) = 2, then we 

must have 

the colors 𝛽(𝑥1) with 4 and 𝛽(𝑧) with 4 . We can give the color 𝛽(𝑥) with 𝐿(𝑥) ∖ {𝑎(𝑛)⋃𝛽  (𝑠)⋃3(  (𝑥), } - If we 

recolor 𝑑(𝜋) with 4 , we matst eschustip: the culces if sal and 3(=). Howver, 2 & 𝐿(𝑠). It be impocosile. Thass, it is 

coutradiction iry assumption. Tharebser, the peool is eomplete. 

Lemma 2.9 If / te at (4,4,4,4) fanc, then evry nerier of 4-fans atn be e 4-fight nerier. that 𝑥𝑖 , 𝑊𝑛𝑥𝑖 asd 𝑤𝑗  ate the 

neighbors of 𝑥, 𝑣, 𝑠, 𝑣, compesing of a tristugle with their usighloor whute 𝑓 ∈ {1,2}. Suppoee to the coutrary that 

wune of 𝑥, 𝑦, 𝑧, 𝑤 = 𝑏𝑖 = 4-light wertex such that 𝑑(𝒜𝑖) ≥ 4. where 𝐴𝑖 = {𝑥𝑖 + 𝑥𝑖 , 𝑧𝑖 , 𝑤𝑖}. 𝑖 = {1,2). Let 𝐺′ =

{𝑥, 𝑦, 𝑧, 𝑤, 𝑥𝑖 , 𝑤𝑖 , 𝑥𝑖 , 𝑤𝑖}, 𝑖 = {1,2}. By the minimality of C. 𝐺 − 𝐶′ wilnibs an (L. 1)-cobsting of 𝛽. We will ecestille 

two casas. 

Case (i) We may give colors with 𝛽(𝑥) and 𝛽(𝑥) ase the satne atal 𝛽(𝑦) und 𝛽(𝑥) abe also. So, let 𝛽(𝑥) = 𝛽(𝑧) − 1 

sad 𝛽(𝑦) = 𝛽(𝑤) = 2. Tlus, we can dethuce that 𝛽(𝑎𝑖) ∈ {2,3} atul 𝑎(𝑏𝑖) ∈ {1,3}, whese 𝑎𝑖 = {𝑥𝑖 , 𝑧𝑖} and 𝑏1 =

{𝑤, 𝑤}, , 𝑖 ∈ {1,2}. We coesbber three subt-cicass in the following- 

Sub-case (i) Firsaly, fur 𝑥 we will coutwillet 𝑥1 sasd 𝑥2 hawe to be incident with only case triaugle. By asentuption, 

we have (𝑥1𝑥2𝑥) = (3,4,4)-lacte. We must have the cilors {𝜃(𝑥2
′ ), 𝑔(𝑥2

′ ), 𝛽(𝑥2
′′)} ⊆ {1,2,3}. If 𝑥1𝑥1

′ 𝑥2𝑥2 is a 

quaulrilatital, we counot give the asmat ecobes 𝛽(𝑥1), 𝛽(𝑥2
′ ) sad 𝛽(𝑥2), 𝑆𝑜, w may tosatmat that 𝛽(𝑥) = 𝛽(𝑥2) =

1, 𝛽(𝑥2) = 𝛽(𝑥2) = 2, 𝛽(𝑥2) = 𝛽(𝑥1) = 3. 𝛽(𝑥1) = 𝛽(𝑥1) − 𝛽(𝑥2) = 1. Here, we must have the coloes 𝛽(𝑥2) − 2. 

Ir we exriange the cobses 𝛽(𝑥2) and 𝑖(𝑥2), we mut trodor 𝛽(𝑥) with 2 or a. Mloriower, secobully, for the writex 𝑦, we 

will coctodiler in und yz have to be incibent with only one triauge. We may aseume that 𝛽(𝑦1) = 1, 𝛽(𝑦2) = 3. If 

𝑚𝑦1𝑦2𝑣2 is a qualtilateral, we have differat colors betworn 𝑦2 und 𝑦2. So. if we asoume that 𝛽(𝑦2
′ ) = 𝛽(𝑦2) = 2, we 

mast have the colots 𝛽(𝑚1
′ ) with 3. CBearly, we hume 𝑀(𝑦2) − 1 acs 𝛽(𝑦2) − 3. If we exclange the cobors 𝐵(𝑦2) 

Sub-case (ii) Fur the vethex 𝑥1, we will cousilie 𝑥1 wad 𝑥2 hune to be iracithet with trinagle We mase hane the colun 

{𝛽(𝑥1), �⃗�(𝑥2)𝛽(𝑥2)} ⊆ (1,2,3}. Lat 𝑥2𝑥2
′ 𝑥2

′  be an traugle and 𝑥1𝑥1
′ 𝑥2𝑥2 be a quadrilateral. We may assume that 

𝛽(𝑥2) = 2, 𝛽(𝑥2) = 3, 𝛽(𝑥1
′ ) = 𝐴(𝑥2

′ ) = 1. Here, we muse lume the color 𝛽(𝑥2
′ ) = 2. If we esclaage the colots 𝛽(𝑥1) 

and AN  1
′ ), iod thes the tivers 𝛽(𝑥2) and 𝛽(𝑥1

′ ), we mad recilor 𝑗(𝑥) with 3. Motowver, for the vertex y. we erill 

cusbser in and yz howe to be lircident with triangle. Lat yrrive be 𝛽(𝑦2) = 3. 𝛽(𝑦1
′ ) = 𝛽(𝑦2

′ ) = 2.5𝑎1, we tuit hane 

the cabe 𝛽(𝑦2
′ ) = 1. If 𝑤𝑒 exuthuge the cobors 𝐴(𝑥) and 𝛽(𝑦), it is impossible for 𝛽(𝑦𝑖) ≤ (1,3). Thuse we will 

excthange the colors 𝛽(𝑦) sad 3(𝑦2). It is eoutralsetson by wevuruptson. 

quadrilatizal. Let 𝛽(𝑥1) = 𝛽(𝑥2
′ ) = 2 und 𝑎(𝑥1

′ ) = 3. We must have the colors ∥ (𝑥2) with 3 sad 𝛽(𝑥2
′′) with 1 . 

Similarly, we will coteviller the wetes g. Lut 𝛽(𝑦1) = #(𝑝2
′ ) = 1 sad 𝛽(𝑦1

′ ) = 2. We must obtain the colors 𝐵(𝑦1) 

and w, where 𝑖 ∈ {1,2}, wre incidont with ouly 8+-fwee, uty zavighoe of 𝑥1
′ , prowe anly two vetios 𝑥 and 𝜓. 

Cher(ii) We may give colors vith 𝛽(𝑥) and 𝛽(𝑦) are dilleretat. So, let 𝛽(𝑥) = 1 asd 𝑎(𝑧) − 2 sad 𝛽(𝑦) − 3 and 

𝛽(𝑤) = 𝑠. We mutat lave the colkers 𝛽(𝑥𝑖) ∈ {2,3}, 𝛽(𝑤)€{1,2}, und 3(𝑧𝑖) ∈ {1,3}. whuse 𝑖 ∈ {1,2}. Suppese that 

𝑎 − 3. We mont have 𝛽(𝑚𝑖) ∈ {1,2}. If we torthatge the culots 𝛽(𝑥) and 𝛽(𝑥1), we most have colors 𝜃(𝑥) ∈ {2,3}. If 

we huwe the colors 𝛽(𝑥) with 3 , it is imposible becanse of 𝛽(𝑦) = 3. So, these ba the colur 𝛽(𝑥) with 2 . If we 

earthange the colors 𝛽(𝑦) wad 𝛽(𝑦1), wv unat hwve caloes 𝛽(𝑔) ∈ {1,2}. If 𝑤 h hume a colker if(s) with 2 , it is 
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imposible. Sa. Here mast tee the toblot 𝛽(𝑦) with 1. Ur we exchutuget the edurs 𝛽(𝑧) and 𝛽(𝑧1), we must have 

mikers the cobots 𝛽(𝑤) with 𝑅(𝑤) ∖ {𝛽(𝑤𝑖)⋃𝛽(𝑥)⋃𝛽(𝑧)}. Thus, it is ostutrwlietion Lise stuggostion. 

Similarly, Fer the vertex ± and 𝑤, we can boluce that the resulting coloring is an (𝐿, 1)∗-coloring, which is a 

motraliction. Thutusere, the prout is ecmulete. 

Lemmia 2.10 Lat 𝑓 be a s-fere by (3, 4.4+)-feore. 

(i) If 3-neriex is a 3-pour verter, then nave of tue f-wcrtions in a f-semipoor verter. 

(ii) 𝐽/ a 8 -vertex in a 𝑆-poor verter, three the neighbors of the third writex not on 𝜀𝑓 is 4+-twricis. 

(iii) If e &-tertex is e I-poor wrier, then at wool dove tvertex of the neiyhlors of ture 4 -nerfices in 3 -verter. 

Proof: Lat 𝑓 = [𝑥𝑤1𝑤2] = (3,4, 4+)-fare and 𝑁(𝑥) = {𝑤2, 𝑚2, 𝑤3} and 𝑁(𝑢𝑖) = {𝑤𝑖 + 𝑢𝑖} where 𝑖 = {1,2}. 

Wer will prowe the lisst (i). Let u be a I-poour vertect. Suppocet to the coutrary that 𝑢𝑖 is a 4 -momi-poor vertex in 

whinh 𝑖 = {1,2}. We rose that 𝛼𝑖 his a 4-vester incibent 𝑣𝑖
′ sud 𝑣𝑖=

′  romd then 𝑢𝑖
′′ be inribent with 𝑣a. Lat hes in 

(𝐿, 1)+-coloring of 𝐴. Withont lass of giverality, let 𝑎(𝑥) = Δ(𝑥2
∗) = 𝛽(𝑣1

∗) − 1, 𝛽(𝑢1) − 𝛽(𝑤2
′ ) = 2 and 𝛽(𝑥2) =

𝛽(𝑣1
′ ) − 3. Sinrs |𝐿|𝑣𝑎) ∣≥ 1, si) we can cowiga the colce 𝛽(𝒖′) with 2 or 3 . If we ticolor 𝛽(𝑥) with 2 . then we must 

sosign the colot 𝛽(𝑤1) with 1. But 𝛽(𝑣1
∗) = 1. Sa, we must be s quoulrilateral. So, 𝛽(+) mimat be 2 . Hemee we must 

asaign the coler 𝛽(𝑣1
∗) with 3 . If we choose the coloss 𝛽(𝑢𝑗

𝑐) with 3 und ⇒ (𝑥1) with 2 , we tunst sosign the oblor 

𝛽(𝐮1
′ ) with 2 .  

If we clasuet the colors 𝛽(n1
∗) with 2 and with a, than we most assign the color 𝛽(𝑢1) with 2 of 1 . If we doocedt 

𝐴(𝑤1) und 𝛽(𝑢2
∗) with 2 or a. If we choceet the colint 𝛽(𝑢1

′ ) with 3 , than we mont we chocose the cober 𝛽(𝑣1
𝑟) with 

1, then we most welign the cobors 𝛽(𝑣1
′′) with 3 und 𝜃(𝑢1) with 2 . If we dhowse that colors 𝛽(𝑣2

′′) with 3 atad 𝛽(𝑖2
′ ) 

with 3. then it is ootrialsetson loy mosumption. If we choose the cobse iM w2) with 2 und 1(�̇�2
′ ) with 3, then it is 

contmalintion. 4-[arso. Thuse, we have to kurw that it cuald be incidoul with 6+ −farse. So. 𝑑(𝑢𝑗
′) ≥ 4 und 𝑑(𝑣1

𝑛) =

𝑑(𝑤2
∗) = 3. Horwever, 𝑤1

𝑟  dad 𝑤2
𝑛 catunt be haljacout to 3-virtex becsuse of w1 and u2 ase moe 4 -poour vertiose. 

Thasefore, the prout is coruplete. then nove of 4-fare ricidind with it rus be atjocnt to 

(i) e 4-puor wortict. 

(ii) a f-semi poive I terlicx and 

(iii) a f-ncwai poost III twricr. incsbent with 4-poor verter.  

Firstly, we will prove a 4-poce vertect incirleat with 𝑓1 − 𝑓2 aul fa. Withonat bose of gowirulit, suppose that all of 

𝑓2 − 𝑓2 adil ∫
1

  ate incibont with a 4-poor vertex. Here, obvicrsly we will woontme that By minimnlity of 𝐺, suppose 

that 𝐺 − 𝐶′ luct an (𝐿, 1)+-ondoring of 3 . We wall cotsaider two civers. 

Choe (i). We mov asoture that 𝛽(𝑣1), 𝛽(𝑢2) und 𝑎(𝑥2) ure the sume calors and 𝛽(𝑥), 𝛽(𝑦) and 𝐵(𝑧) ure the sistae. 

So, we mary asodgn the colorn 𝜃(m1). 𝛽(𝑣2) sad 𝛽(𝑚1) with 1 and thara the olies 𝛽(𝑥), 𝛽(𝑦) und 𝛽(𝑧) with 2. Were, 

we must awiga the olor 𝛽(𝑢) with 𝐿(𝑥) ∖ {𝛽(𝑢1), 𝛽(𝑥2), 3(𝑢3)} and we must sosign that cobor ∃(𝑎𝑙) with 3. 

Evibonty, 5-foer in 3-ecibring and fi-fare is 2 -eobsring. So, we mut whign the colors 𝛽|𝑎2| wirh 1. Hete we will 

sosign that colle 𝛽(𝑢) with 3 . Here, we mist hawe ull eabes 𝑎(𝑥), 𝛽(𝑦) adal 𝛽(=) with 2 . If we esoluange the cobors 

𝛽(𝑥) sall 𝛽(𝑢𝐿), we mat with 𝐿(𝑥1) ∖ {𝑎1
′ )}. Sutace 𝛽(𝑥2) = 1, it must be 𝛽(𝑥1

′ ) = 1. Nirw, we cau have the cobor 

𝛽(𝑥2) wilh 2. It is contrulieticm. Motowne, since 𝑢2 wal 𝑢3 𝛽(𝐱3) with 3. It bo comtruliction. 

Further mure, since |𝐿(𝑢)| = 3, we mod asoiga the culor ∣ 𝑥(𝑥) with 2. 𝐼(𝑢2)⟩{𝛽(𝑢2
′ )} aul 𝛽(𝑣1) will 𝐼(𝑢3) ∖

(𝛽(𝑢1)). Sos we mod have the colors Howerer, it is tamtratiction by asoumpticin. 

Case (ii). We may wormat that 𝛽|m1|, 𝛽|m2| sal 𝛽|m3| are diffrimat. Evilıutlv. we mast have the colors 𝛽(𝑥), 𝛽|𝑣| 

mal 𝛽(𝑧) are dillerent. We may cos ume that the colurs 𝛽(𝑢3) with 1, 𝑀(𝑚2) with 2 wall 𝛽(𝑢3) with 3 . So. we munt 

have the caloes 𝛽(𝑥) with 3. 𝛽(𝑣) with 1 and 𝛽(𝑧) with 2 unt then ootulimasuly we must have the scibss 𝛽(𝑥)) wilh 

2, 𝛽(𝑦) with 3 and $(𝑧1) with 1. If we asoiga the oolut 𝛽(𝑢) with 1 , than we mast necbor 𝛽(𝑢1) with Hors, it in 

coulauliction. 

If 𝑤 swiga the cobst 𝛽(𝑢) with 2 , then we must becalor 𝛽(𝑤2) with Howowt. it is botat rauliction. If we howign tlae 

colos 𝛽(𝑣) with 3,1 barn we with distirat 𝛽(𝑤3). Howevet, it iev countrulictiom. obtiditiom (i). Thavelere, the proot is 

complete. 

Corollary 2.12 Sappose to 𝑣 is a 8-skmi-poior verfex in ataich 𝑓1 = |𝑣1 + I2|. semi-poar tertions, Whre tbe there 

nertios of y2, P2 end is ark a+-tertion. 

(i) the threx noiglbors of = are 4+ −mertios (i.e.. 𝑓(𝑁(𝑥)) ≥ 4) and 
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(ii) erarlly the werlex ty in either e f-poor werkex or a 5-poour nerfer. 

Definition 2.14 (i) 𝐴 vertex 𝑥 in a 𝑊(𝑥)-verficr inctilcut with at wobl u-trimigles and others are any foves. Ns merfer 

in callnd The -verter. Hore, ∣ 𝑇ra  | - the namber of w-triangles focidend wikh a neriex 

(ii) 𝐴 merter 𝑛 is 𝑑(𝑛)-merfer with dif (𝑢) ≥ 4 m miim 𝑛 is inridenf will: craclly ⌊
Ag

2
] 3-faos end exnctiy ⌊

1f

2
] f-fores. 

It is said to be e micilont betwoce turo 3-fares. 

Lemmin 2.15 Lal u be 𝑇𝑁∣∞) - vertex iv 𝐶.Cubfilima: 

3-facs, one 4-face and oue 8+ −faca. 𝑛 is coliul a spocial 𝑇3-vertex Thes followitiog conditions: Lat u be 𝑇−1/∗) − 

verter in 𝐺 wilh 𝑑(𝑢) ≥ 4. 3-farrs, one 4 -farx and ane 8+ −farr. tav S-ferses, wor 4 -fore, and then athers ere 

g+ −farres lent with at most tiro 5+-farcs and athers are incidfot writh at mool ⌈
𝑑(𝑎)−1

−
⌉ − 18+-fores. Writh at mast 

⌈
ℕ′

4
⌉ 8+ −faors 

 

Figure 7: in which there are incifent wilh af mast ⌊
4 w 

2
⌋ S.fares and et mowt ⌊

4 a 

2
] 4-farrs, then there are at miast fao 5+-

fooss and (
𝑑𝑓

4
−

1

4
) 8+ −faose 

Corollary 2.17 J/u is a 𝑇𝑑/∗) − verfex ⟨𝑑(𝑢) ≥ 9, 𝑑(𝑢) − 4𝑛 + 5, 𝑛 = 1.2, … ) 4-faras, then there are at mast fimo 5+-

feors and (
4+f

2
− 4) s+-farse 

2. DISCHARGING PROCESS 

We soov upply a diathrging peocodure to mact a costrwlistson. We first difias the initial duarge furaction do on the 

vertions aral fices of 𝐺 lyy let tings, 𝑐ℎ(𝑣) = Δ(𝑣) − 2𝑏 if 𝑣 ∈ 𝑉(𝐺) und 𝑐ℎ(𝑓) = (𝑏 − 𝑎)𝑑(𝑓) − 2𝑏, 𝑓 ∈ 𝐹(𝐺). We 

nute 𝑎 −
3

2
 und 𝑏 =

7

2
 ios that we get the initial function 𝑐𝑏(𝑣) =

3

2
𝑑(𝑣) − 7 if =∈ 𝑉(𝐺)2 and 𝑑𝑎(𝑓)2 − 2df(𝑓) −

7, 𝑓 ∈ 𝐹(𝐺). It followx from Ealer's formula |𝑉(𝐺)| − |𝐸(𝐺)| + |𝐹|𝐺) ∣ −2 und the relatson 

∑  

𝑣=𝑉(𝐷)

𝑑(𝑣) = ∑  

𝑓∈𝐹(𝐺)

𝑑(𝑓) = 2|𝐸|(𝐺) ∣ 

so) that the total sum of initial furction of the wrticis and fucos is equal to 

∑  

𝑣∈𝑉(𝐺)

 ℎ(𝑣) + ∑  

𝑓∈𝐹(𝐺)

 𝑐ℎ(𝑓)  = ∑  

𝑛=𝑉(𝐺)

  (
3

2
𝑑(𝑣) − 7) + ∑  

𝑆∈𝐹(𝐺)

  (2𝑑(𝑓) − 7)

=
3

2
[2|𝐸(𝐺)|) − 7|𝑉(𝐺)| + 2|2|𝐸|  𝐺) ∣) − 7|𝐹(𝐺)|

 = −7(|𝑉(𝐺)| + |𝐹(𝐺)| − |𝐸(𝐺)|) = −14

 

Since any diechurging proosolure preserves the total charge of C. if we can inflise suitahlie discharging rules to clange 

the initial churge funaction ah to the final charge function of on 𝑉 ∪ 𝐹 solh that 𝑐𝑀(𝑥) ≥ 0 for all 𝑥 ∈ 𝑉 ∪ 𝐹. thin 
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0 ≤ ∑  

𝑥∈𝑉𝑢𝐹

�̂�′(𝑥) = ∑  

𝑥∈𝑉𝐿

𝑑ℎ(𝑥) = −14, 

a coutrudiction comipletling the proof of Thoverm 1.1 when 𝐺 is 2-owntocted. Prool of Theorem 1.1 3, the following 

Lamua bi olwiuts. 

Lemma 3.1 (i) In 𝐺, there is no adjwornt 3-farces. 

(ii) In C, thers is e f-fare efjuront to at muat ture i-faris. Morwoser, whes e f-foor is erjarrat to ef frest ows 3-fars, the f-

fare can be adjerant fo soe f-faxe eaript 𝑣 is a 𝑆-poor worlex. 

(iii) In G, there is a f-farx edjamout to al thest wor f-fers. 

(iv) In G. there is a a-fers arfjarant to et moot ane 3-farr end no affarant to ars 4 -foces. 

(v) In G, there io no 6-fear adjarant to e S-foos. 

We will intecoluce the discharging rulis: 

R 1. Chatge from a 4+-face 𝑓 

R. 1.1. If 𝕕(Ω) = 4, then 𝑓 somal t to ewh incialeat vatex. 

R. 1.2. If 𝐴(𝑓) = 5, then 𝑓 sombe to to ewh incidinat wrtex. 

R. 1.3. If 𝐴(𝑓) = 6, then 𝑓 suake fof to ewch incideat votwx. 

R 2.1. Suppoise to 𝑣 is a 4 -liglat verter. 

Let 𝑓−∣ 𝑣1𝑟2𝑣) = (5+, 3,4)-five. Then 𝑣 gets 𝑓 from each from 8+- lhee and 
5

7
 from 𝑓. Afer that or gots 

9

 
 Irom 8+-

fare and suali 
13

 th 
 to 𝑓. 

R 3. Suppoest to 𝑣 be a poor vettox in which 𝑓 − [𝑟1𝑣2𝑣1] with 𝑑(𝑣1) ≤ d(v2) ≤ d(v2). 

R. 3.1. Lat 𝑑(𝑣2) = 3 and 𝑣2 le a 3 -post wortex. Thas 𝑣1 gets 
1

2
 Irom each 4 -face and f amale 

1

2
 to 𝑦1 – 

R. 3.2. Lat 𝑑(𝑣2) = 4 anul 𝑟2 be an 4-pose vertex. 𝑣2 gds If from 5-frote aul from 6 -fuce and 𝑓 gers 
𝑓

𝑓
 from 𝑣2. 

R. 3.3. Let 𝑑(𝑣1) = 5 und 𝑣2 le a 5-poot vertex. vy geb 3 frum 5 -fuct: ftrum 6+ −Lire und from 5+-face amd then 𝑓 

grts ff from 19. 

R 4. Suppoced to 𝑣 be a 3-armi-poor vortex in which 𝑓1 − [𝑣𝑣2𝑥2], 𝑓2 = ∣ tr  2𝑦𝑣2 ∣ wad 𝑓𝑎 = |tr𝑗 ∗ 𝑣1| with f(𝑣) 

d(vi) whate 𝑖 ∈ {1,2,3}. 

Rt 4.1. Let 𝑑(𝑧) − 3 and = be a 3-ami-poor vertex. Then 𝑣 ges ff frotu each 4 -fince 

R 4.2. Let 𝑑(𝑥) = 𝑑(𝜋) = 𝑑(𝑧) = 3 ant thery be 3-somi-poos vetticts. as 𝐫. 

R 5. Suppoceet to 𝑣1 be a 3-full-poot vertex in which 𝑓 = |r1𝑣2𝑣3| with 𝑑(𝑣1) ≤ 𝑑(𝑣2) ≤ 𝑑(𝑣2). Then 𝑣1 gis 3 from 

5-fuce and 
18

2
 from 8+-fact 

R 6. Suppoceat to 𝑣 be a 4-sumi-poor vertica in which 𝑓1 = |−𝑣1𝑣2|, 𝑓2 = from 8+ −fioe und it sumb 
1

2
 to 𝑓1. 

R E.1.1 For 𝑊((𝑣1) = 𝑑(𝑣2) = 3, 𝑣2 gets + from 𝑓1 + from 4-fioce 8+ −face 

R. 6.2 Lat v lee a 4 -ami-poor II vertix. Then = guts 
1

4
 from 𝑓 a wall 

7

3
 Irotu 8+ −fhoce ind it sombe 

1

2
 to 𝑓1. Frum, 

8+ −fact. 

R 6.2 .2 For 𝑑(𝑟4) = 3, if the ontes neiglubor of 𝑣1 is 4 -semifrom 8+-lace. If the outer neighbor of r2 is not 4 -wemi-

poser vertex, then vy gets 
2

4
 from 𝑓𝑎 und 

1

4
 from 4 -lace wad 

9

 
 from 8+ −fact 

6.3 Lut v be a 4 -semi-poor III wirtex. Then 𝑣 gets ff from 𝑓1 ant from 𝑠+ −cars sud it amals if ta fi- 

R. 6.3.1 For 𝑑(𝑣1) = 𝑑(𝑣2) − 3, 𝑣2 gits 
7

−
 from 𝑓𝑖,

3

5
 from 5-fack sual 

1

 
 from 8+ −bare whd thesi ve get 

2

3
 from fa aul 

9

 
 

Ifom s+ −fact 

6.4 Lat 𝑣 be a 4-semi-poor IV vertex. Then 𝑣 gots ff from fa aul Frum 8+ −tare and it somb af to 𝑓1 frum B+ −- 

R 6.4.2 For 𝕄(𝑟2) = 3, if ther onter neiglinor of 𝑟1 is 4 − ∞ = 𝑚𝑖 − poor wertex, then 𝑟𝑖 gets if frum fa, ifrom 4-fars 

sasal if from 8+-fioce. If the outer nighloor of ns is nut 4-senti-pocer vertex, then vy gets 
1

 
 trom fa und &f frum 4 -

fiece sad ? from s+-fare uppose to 𝑣 be a 4-full-poor vertios in which 𝑓1 = [  vir 𝑥𝑖𝑦1 ∣. 𝑓3 = sayv ∣ wad 𝑓2 und 𝑓1 

ave 8+-fines will 𝑑(𝑣2) = 𝑀(𝑟1) = 3 

7.1 Lat = be a 4-full-poor I weter. Then 𝑣 ges of from toch 8 + − fure and it sambla 3 to 𝑣1 wall 𝑟2. 
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3. R. 7.1.1 For df(𝑣1) = 𝑑(𝑣1) − 3, both 𝑣1 aud 𝑣1 gt 
1

2
 from 4-fice 𝑓1 und 𝑓2 sond 

1

2
 to 3 -verter sond 

1

2
 to 4+-

verters. 

7.2 Lut e be is 4-full-poor II wetex and 𝑟1 in incsbent wirh 3-[act and 𝑟4 bs incidond with 4 -lace. Thent 𝑣 gets 
7

 
 from 

ewch 5+-fact and it sombe if to 𝑣1 and to to r4 

R. 7.2 . 1 For 𝑑(𝑣2) = 3, mo gets 
1

2
 from 4-furs and 

2

 
 from 8+-fact sad then it gets 

2

7
 from 𝑣. verlex, them 𝑣𝑎 gets 𝑡 

lrum 𝑓𝑎 of from 4 -foce and of from 4-fice sad of from s+-fare adal then 𝑓 Erom 𝑣. 

7.3 Lat 𝑣 be a 4 -full-poor III vertex. Then 𝑣 gets f from earh 8+- Lace und it sasale 
2

3
 ta both 𝑣1 and 𝜀4. 

R. 7.3.1 For A2(n) − 𝑑( m1) = 3, ir the onder nighlors of r1 and 𝑣4 is 4-samb-pour vertiovs, thim both of 𝑣1 and 𝑣4 

get 1 from the outer sovighbes of 𝑣1 and 𝑟1 wre mod 4-bomi-pocer wrticis. then th und 𝑒4 get 1 from 𝑓1 sad 𝑓3 sad &t 

trom 4 -fare aral ? from 8+ −Gurs atal then of from 𝑣 

R 8. Suppoces to 𝑣 is 𝑇2(𝑣) − verter. 

We dediuce induction 5 × 𝑑(𝑚) ≥ 3. 

R. 8.1. 𝑇3 − tvrikx. 

Let 𝑓 = |𝑣𝑣2𝑣2| and 𝑣 be 3-verterx ifceident with 4-fare hund 8+-fice. If r is a 𝑇3 vorlex, then 𝑣 gots of from 8+-fice 

and 1 frum t-face. Thern 𝑓 sotuls 9 to v : 

R. 8.2. 𝑇2 - vxrikx. 

If 𝑣 is 𝑇4-vortex inciblent with one 4 -fuce and ars 8+ −fuce, thest eart 3-fices. 

R. 8.3. 𝑇Th – wriks 

Let 𝑓1 = |𝑣𝑣1𝑣2| und 𝑓2 = |𝑣2𝑟1|, 𝑣 gets If from inach 5+-fact and if from 4-fwoe. Then = samale to to ewch 3-fare. 

R. 8.A. 𝑇stex) – wertex 

R 8.4.1 Lat = be a 𝑇divel -vertex soch that 𝑛 is even aul 𝑛 ≥ 6. 𝑣 gets 2 from ewh 8+-fince sasd ffrom 4-fure In grastal 

v 

R. 8.4.2 Lat 𝑣 be a 𝑇−(𝑣)-vertex such that 𝑑(𝑣) is call and 𝔸(𝑝) ≥ 7. Hete 𝑣 in incsbont wilh (
𝑑𝑒+

2
− 𝑖) 8+-fauce 

whare 𝑑(𝑣) = 4𝑟 + 3, 𝑟 − 1,2, … , 𝑛 und 𝑑(𝑣) ≥ 7 aul ingident with ⌊
4𝑣

2
⌋ 3-liute sad two 5+ −fiest Thuse 𝑣 gets of 

fromi each 8+-fare, of from 4-face and 3 from tath 5+-Sime. Lh guaral fot 𝑑(𝑣) = 4𝑛 + 3, 𝑛 = 1,2, …, und 𝑑(𝑣) ≥

7, 𝑣 sutuls 
524]+−194

tan2 (𝑝)
 to stach 3-[ave. (R 8.4.3) Lat 𝑣 be a 𝑇vel -vertex soch that 𝑑(𝑣) is oald and 𝑑(𝑣) ≥ 9. Hote = is 

incident wilh (
𝑑𝑣

4
−

5

4
) 8+ −fice where 𝑑(𝑣) = 4𝑛 + 5, 𝑛 = 1,2, … , 𝑛 and 𝑑(𝑣) ≥ 9 asd incilifot with ⌊

4√2

2
⌋ 3-fice adal 

two 5+ − 5 thes. Thim v gets + from varh 8+-fince, 𝑓 trom ench 4 -fice sud ? Iroum earh is  + −Inoe. 

In gexarral foe 𝑑(𝑣) = 4𝑛 + 5, 𝑛 − 1,2, …, und 𝑑(𝑣) ≥ 9, 𝑣 thes 𝑟 gets 
1

4
 from 4 -lace, from 6+-face and 

9

 
 from 8+-

fhoe and amale 1 to 3 -lace: 

R 10. Oehurwises, ir 𝑣 is rast a pour vetex in whidh 𝑓 = |𝑣1 − 𝑣2, 𝑣2| = (3,4,5)-face, thes / gess 1 lrom 4 -vertex and 
1

2
 frum 5-vertex and them it sunds 

9

 
 to 𝑛2. 0) Fer all 𝑥 ∈ 𝑉 ∪ 𝐹. Lat = 𝐸𝑉(𝐺) sad 𝑓 ∈ 𝐹(𝐺). The peroal caa be 

cutupleted 

with 𝑑(𝑥) for 𝑎𝑙𝑙𝑥 ∈ 𝑉 ∪ 𝐹. Iot =∈ 𝑉(𝐺) aul 𝑓 ∈ 𝐹(𝐺). Since 𝑑(𝑒) ≥ 3. If df(v) = 4, tr 𝐑1 sal 𝐑 2, then vis a 4-light 

wetex with 𝑓 − (3,4, 5+)-fare So, ch′ (𝑣) = ch (𝑣) + 2 ×
1

2
+

1

2
−

3

2
× 4 − 7 + 2 ×

1

2
+

1

4
−

3

2
− 0by𝐑 2.1. 

Coutinuomly, if 𝑑(𝑣)2 − 32 by R. 2.1 aud R. 5, thon 𝑓 = (3.4, 5+)-face und the 3-wsters is 3-full-poor vettex. 

5Sa, �̂�′(𝑒) = 𝑑(𝑣) +
10

3
+

1

2
− 0 by 𝐑 2.1udid𝑑 N′(𝑣) = 𝑑(𝑣) +

10

3
+

1

2
+

3

2
> 0RR. 

If 𝑓 = [𝑣1𝑣𝑦𝑒𝑎] = (3,4,5) ly R. 1 sad R. 3 sad loy Lumat 2.8, then 𝑀(𝑣) = 𝑑(𝑣) + 2 ×
1

2
+

3

2
− 0 ly 𝐑 3.1. And thest 

fint 𝑑(𝑣) = 4, 𝑑𝑓′(𝑣) = cl(𝑣) +
1

2
+

1

5
−

1

2
− −1 +

1

2
+

1

2
≥ 0𝐑 3.2. Morevener, fir 𝑑(𝑣) − 5. 𝑑𝑃(𝑣) = ch (𝑣) +

2

5
+

2 ×
5

2
−

1

2
+

1

3
+ 2 ×

5

6
−

2

2
≥ 0 R. 3.3 . If 𝑑(𝑣) = 3 and by R 1 uni R 4.5 so, we lauve dh' (𝑣) = 𝑚(𝑣) + 3 × 4 −

3

2
×

3 − 7 + 3 × 2 − 0 by R 4.1. By Cocollary 2.12 if 𝑑(𝑥) = 𝑑(𝑦) = 𝑑(𝑧) − 3 atul thery are 3-semipoor vestios, then 

𝑑(𝑥; ) ≥ 5. 𝑆𝑜, 𝑁′(𝑣) = 𝑑(𝑣) + 3 ×
1

2
+ 3 ×

1

2
− −

5

2
+

4

2
= 0 by R 4.2. If d(v) -3 wad 𝑓 = |𝑣𝑣1𝑣2| = (3,4, 4+)wad 

𝑁(𝑣) = (𝑣1, 𝑣2, 𝑣3) by R 1 and R 5 and ly Ievuma 2.13, then 𝑣 in a 3-full-poor wettex. Sos, c′(𝑣) = 𝑑(𝑣) +
1

2
+

1

2
−
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𝜋

3
− −

4

2
+

5

2
− 0 by R 5. Thun, if 𝑖2 is a 4 -poor vertex, ben ive is incilintat with 4-fure, 6+-face and 8+-bare. So, for 

𝑑(𝑣) ≥ 4, 𝑑′(𝑣) = 𝑚(𝑣) + 𝑡 + 4 +
𝜋

3
− 1 ≥ 0 by 𝐑9mul𝐑. . Here, for 3 − Bare, 𝒌′(𝑓) = 𝑑(𝑓) + 𝑡 +

1

2
+ 1 > 0𝐑 З.2 

und 𝐑5 acal 𝐑𝟗. with 𝑑(v2) = 𝑑(𝑣4) − 3, then 𝑣 is a 4 -bomb-poos vertex hy 𝐑1 wad 𝐑 6. If 𝑣 bi is 4-semi-poor 

varter I, then N′(e) = 𝑑(𝑣) +
1

1
+ 2 ×

1

2
−

1

2
− −1 +

1

1
+

1

1
−

1

2
> 0 by 𝐑 6.1. For 𝑑(𝑣1) − 3, we mutst have 𝑑(𝑣2) ≥

4. So, 𝑁′(𝑟1) = 𝑑(𝑟1) +
𝑡

𝑡
+ 𝑡 +

𝑖

2
− 0 by 𝐑 6.1.1 and R 9 . Tloen 𝑓 = [𝑟1𝑣1], 𝑁′(𝑓) = 𝑀(𝑓) +

3

2
+ 1 − 𝑘 > 0 by R. 

6.1. R. 6.1.1 und R. 9. Fir 𝑑′(𝑣1) − 3. if 𝑟1 is incident with 𝑓 = (3,4,5) − Lars, then N′(r4) = ch(𝑣𝑖) + 3 +
2

2
+

2

2
> 0 

𝑡 + 2 × 𝑡 −
3

2
− −1 +

1

4
+

2

4
−

2

2
− 0 by 𝐑 ⋅ 6.2. For 𝑑(𝑣4) = 3, ir the onter usighlour of 𝑥1 in 4-ormi-poot vetex, thes 

𝑁′(𝑥1) − 𝑑(𝑥4) + 3 + 4 +
2

2
≥ 0 by R. 6.2.2. For 𝑑(𝑥4) = 3, if the outer wisflahor of 𝑥4 in 4-full-poocr vertioc. 

If 𝑣 is is 4 -smai-poor vertex III, then ch′(𝑣) = d(𝑒) +
1

2
+ 2 × 2 −

1

2
= −1 +

1

2
+

2

4
−

2

2
> 0 by R 6.3. For 𝑑(𝑣1) − 3, 

we mist have 𝑑(𝑣2) ≥ 4. So, 𝑁′(𝑣1) − 𝑑(𝑚1) +
𝑧

3
+

2

2
+

1

3
> 0 by 𝐑 6.3.1 ama R 𝐑. Then 𝑓 = [= 𝑣1𝑣𝑦], 𝑀(𝑓) =

𝑑(𝑓) +
1

2
+ 1 −

3

2
> 0 ly 𝐑. 6.3, R. 6.3.1 sad R. 10. For 𝑑(𝑡1) − 3. if 𝑣4 is incitlost with 𝑓 = (3,4,5)-Facte, thea 

𝑐𝑓′(𝑣4) = ch (𝑣𝑎) +
2

2
+ 2 + 9 > 0 by R. 6.3 .1 und R 10. 

If 𝑣 is a 4 -owmi-poour wertex IV, thaw 𝑑𝐾′(𝑣) = 𝑚(𝑐) +
1

4
+ 2 × 9 −

3

2
− −1 +

2

3
+

9

2
−

3

2
− 0 ly 𝐑 6.4. For 

𝑑(𝑥𝑦) − 3, if the owter nighbor of ≈1 is 4-acmi-poor vertex, then ch′(v1) − de (v4) +
1

4
+

1

4
+

2

3
≥ 0 be 𝐑 𝑀(𝑟1) =

𝑑(𝑣4) + 1 + 4 + 3 + 4 ≥ 0 by R E.A.2 mad R T.1 

Fur 𝑑(𝑣) = 4, ir 𝑓1 = |𝑣∇1𝑥2|, 𝑓1 = [𝑣𝑟2 ∥ 𝑟2] und 𝑓2 and 𝑓4 are 8+-ficts If = is a 4 -full-powe vortex 1 , thes 

𝑑ℎ′(𝑣) − 𝑑(𝑣) + 𝑡 + 2 × 𝑡 − 2 × 3 − 

−1 + 4 − 𝑡 > 0 by 𝐑 7.1. For 𝑑(𝑣1) = 𝑑(𝑟1) = 3, if 𝑟1 und 𝑟a are insbont with 𝑓 = (3,4,5), then 𝑑ℎ′(𝑣) = 𝑚(𝑟) +
1

2
+

2

𝑡
+

9

𝑑
+

2

𝑦
> 0 by 𝐑 7.1 .1 mal R 11 (wlare 𝑟 is sepoesituted by 𝑟1 und 𝑣4 ). If = Bs is 4 -[itl-poor wirtex II, thon 

ch′(𝑣) = 𝑑(𝑐) +
1

5
+ 2 ×

2

−2
−

1

5
− −1 +

1

5
+

9

2
−

3

5
> 0 by R 7.2. For 𝑑(𝑟4) = 3. ar the owter tavighoot of 𝑟2 is 4-

wami-pose verLiox, then CM′(𝑣1) = 𝑑(𝑣2) +
1

2
+

1

5
+

9

4
+

2

3
= 0 ly R. 7.2 .2 and R 6.1. For 𝑑(𝑣4) = 3, ir the owher 

nwighbor of 𝑣4 is 4-[ull-poser vetwx, then 

Fur 𝑊(𝑣) − 3, In R 1 und R. 8. if = Bo inciuluak with Z-fioor, 4-fout Here, 𝑣 is 𝑇3-virtex aul we cau get 𝑛1 is a 4 -

womi-pose wot wx sud 𝑣2 ≥ 4 und = 0cM(𝑣) = ℎ(𝑣) +
1

4
+

2

+
+

2

2
− 0 ly R. 8.1. R. 6 sad R. 9. Thut 𝑑𝑀(𝑓) =

𝑀(𝑓) +
2

2
+ 1 −

2

3
> 0 by R. 8.1. R. 6 and R. 9. 

For 𝑑(𝑟) = 4, ly 𝐑1 und 𝐑 8, if 𝑟 ins incsbont wirle two 3-farss, was 4-fiwer and une 8+ −fack, thea v is a 𝑇2 − 

vetex. Let 𝑓1 = |𝑣𝑣2r2| ithal 𝑓2 = [𝑣𝑣2r4 ∣⋅ 𝑓2 be 4-Gare und 𝑓1 is 𝑠+ −fice. 50, ch′(𝑣) = ch (𝑣) +
1

1
+

10

2
− 2 × 2 ⋅

2

2
− 0 by R. 8.2. Lut 𝑓1 = 𝑓1 = (3,4,5). Ir 𝑣 is a 𝑇4-vertex, then cli (𝑓) = 𝑑(𝑓) + 𝑡 +

𝜋

2
− 𝑡 < 0 by R 8.2, R. 10 or 

𝑑′(𝑓) = 𝑐ℎ(𝑛) + 𝑡 + 𝑡 − 𝑡 < 0 ly R. 8.2. R. 3.1. So, it is impocsilde that 𝑇−4-vertex is mljecent to 3-vortex. 

Lemma 3.2 Lat 𝑓1 − [𝑟𝑣1𝑣2 ∣ and 𝑓1 − |𝑡𝑟1𝑣2|, 𝑓2 be 4 -farx erod 𝑓1 is und two 5+ − [ fioe, than v is a 𝑇5 − vartex. 

Lat 𝑓1 = [𝑣𝑣1𝑣2 anal 𝑓1 = [𝑣𝑣1𝑣2], 𝑓2 0lng𝐑 B.3. R 9 iud R. 3.1 ur 𝑐′(𝑓) − ch (𝑓) +
7

7
+

3

2
−

1

2
< 0 by R. 8.2 R 3.1 

und R 10. So, it is imposbilhle that 𝑇5-vertex is auljuciot to 3 − poour vortox. Thus 𝑑′(𝑓) = ch (𝑓) + 𝜋 +
2

2
−

1

𝑟
> 0ln 

R 8.2, R. 10 and wijuorut to 𝑇𝑎 − vortex, thas 𝑓 = (5, 3.5+)-bare 

Lemma 3.3 In 𝐺, let 𝑣 be a 𝑇3-verlex in which 𝑓1 = [  rer  1𝑣2 and 𝑓2 = [ rav ]2, 𝑓2 be 4 -fare aud 𝑓5 be 5+-fares If a 

𝑇5-verlex is efjarout to 𝑇𝑎 − virtax, born 𝑓1 = 𝑓2 = (5,3, 5+)- form. 

Motiver, if = is a 𝑇𝑑/4-vortex, where 𝑑(𝑧) ≥ 6 und 𝑑(𝑣) is mex, by 
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�̂� ′(𝑣) ≥ ch (𝑣) +
3

8
(⌈

𝑑(𝑣)

4
⌉) +

1

4
([

𝑑(𝑣)

4
⌋) −

ℏℎ′(𝑣) − 224

16𝑑(𝑣)
⌊
𝑑(𝑣)

2
⌋

 −
3

2
𝑑(𝑣) − 7 + ⌈

3(𝑣)

32
⌉ + [

2𝑑[𝑣)

32
] −

53 h(𝑣) − 224

[6f[(𝑣)
[
𝑑(𝑣)

2
]

 =
◻ 3𝑁(𝑣) − 224

32
−

◻ dN(𝑣) − 224

16𝑑{(𝑣)
⌊
d{𝑣)

2
⌋

 ≥ 0

 

by R. 8.4.1. 

If 𝑣 bi a 𝑇−(𝑛)-wetex (𝐴(𝑥) ≥ 7, 𝑑(𝜀) = 4𝑛 + 3, whete 𝑛 = 1,2, −) in 𝐑 8.4.2 and hy Corcilhary 2.16. tham 

cl′(𝑒) ≥ ch (𝑣) +
3

8
(

𝑑(𝑣)

4
−

3

4
) +

1

4
(⌊

𝑑(𝑣)

4
⌋) + 2 ×

3

5
− (

𝜋2𝑁(𝑣) − 194

16𝑁(𝑣)
) ⌊

𝑑(𝑣)

2
⌋

 −
3

2
𝑑(𝑣) − 7 +

3𝑑(𝑣)

32
+ [

𝑑(𝑣)

16
] +

6

5
−

9

32
−

52𝑑(𝑣) − 194

[𝑓𝑖𝑑(𝑣)
(

𝑑(𝑣)

2
]

 −
51𝑑[(𝑐)

32
+ ⌊

𝑑(𝑣)

16
) −

973

160
−

52𝑑(𝑣) − 194

16𝑎𝑓(𝑣)
⌊
𝑑(𝑣)

2
⌋

 ≤
26𝑖𝑑(𝑣) − 9𝜋3

160
−

52 d(𝑣) − 194

32

 −
265𝑑(𝑣) − 9𝜋3

160
−

266𝑀(𝑣) − 970

169
 > 0

 

8.4.3 mad hy Corcillary 2.17, tham 

 ≤
26𝑖𝑑(𝑣) − 1018

160
−

532(𝑣) − 202

32

 −
265 d(𝑣) − 1018

160
−

260 N(𝑣) − 1010

160
 > 0

 

If o is a 4-light wortex, then 𝑓 = [(𝑟𝑣𝑦𝑡) = (3,3,4)-fice by R1 and R2.1 wal 

 𝐑. . If 𝑣1 und 𝑣2 are 3-full-poos wortions, then cN′(𝑓) = 𝑐ℎ(𝑓) + 1 + 𝑓 +
7

20
− 2𝑑(𝑓) − 7 + 𝑖𝑓 ≥ 0. By Lumima 29 

, when 𝑑(𝑓) = 4, 𝑓 sunuls 𝑡 to carh 4-light vertex, कh (𝜌) = ch (𝑓) − 4 ×
1

2
− 0 ly R 2.1 und R 1. Suppose by 

𝐑. 3.1, 𝐑3.2 and R 3.3. By R. 10, if 𝑣1, 𝑣2 wad 𝑣3 are hot poos verticts. 

Then ch2 (𝜌) = ch (𝜌) +
1

2
+ 1 −

1

𝑛
− 2𝑁(𝑛) − 7 +

1

7
> 0. 

For 𝑑(𝜌) = 4, by Lemma 2.11, �̂�′(𝜌) = 𝑑(𝑓) − 𝑡 −
1

3
− 2𝑑(𝑓) − 7 − 𝑡 < 0 by R. 3.2. R. 4.1 satal R. 6.1. So, Lemma 

2.11 is true. und 𝑑(𝐺) ≥ 3, the following lomina be olwiote. This coupletes the proof of Thasorim 1.I. 

4. CONCLUSION 

Planar graph: A graph that can be embedded in the plane without any edges crossing. 

Adjacent triangles or 7-cycles: This means that the graph does not contain any adjacent triangles (cycles of length 3) 

or 7-cycles (cycles of length 7). In other words, there are no three vertices connected pairwise by edges such that they 

form a triangle, and there are no cycles of length 7. 

(3, 1)-choosable: This refers to a graph coloring property. A graph is said to be (a, b)-choosable if whenever each 

vertex is assigned a list of at least 'a' colors, and each vertex has at most 'b' neighbors with the same list of colors, then 

there exists a proper coloring of the graph where each vertex is assigned a color from its list such that no adjacent 

vertices share the same color. 

The conclusion you provided states that every planar graph that does not contain adjacent triangles or 7-cycles is (3, 

1)-choosable. 

This result likely comes from a deeper proof involving techniques from graph theory and combinatorics. The idea is to 

show that such graphs can be colored with at most 3 colors in such a way that no adjacent vertices have the same 

color, given that each vertex has at most 1 neighbor with the same set of available colors. 
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This kind of result can have applications in various areas, including scheduling problems, network optimization, and 

other fields where graph coloring plays a role. 
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