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ABSTRACT 

With the rise of Deep Learning approaches in computer vision applications, significant strides have been made 

towards vehicular autonomy. Research activity in autonomous drone navigation has increased rapidly in the past 

five years, and drones are moving fast towards the ultimate goal of near-complete autonomy. However, while much 

work in the area focuses on specific tasks in drone navigation, the contribution to the overall goal of autonomy is 

often not assessed, and a comprehensive overview is needed. In this work, a taxonomy of drone navigation 

autonomy is established by mapping the definitions of vehicular autonomy levels, as defined by the Society of 

Automotive Engineers, to specific drone tasks in order to create a clear definition of autonomy when applied to 

drones. A top–down examination of research work in the area is conducted, focusing on drone navigation tasks, in 

order to understand the extent of research activity in each area. Autonomy levels are cross-checked against the drone 

navigation tasks addressed in each work to provide a framework for understanding the trajectory of current 

research. This work serves as a guide to research in drone autonomy with a particular focus on Deep Learning-

based solutions, indicating key works and areas of opportunity for development of this area in the future. 

1. INTRODUCTION  

As small form factor UAVs similar to the drone pictured in Figure 1 flooded the market, several industries adopted 

these devices for use in areas including but not limited to cable inspection, product monitoring, civil planning, 

agriculture and public safety. In research, this technology has been used mostly in areas related to data gathering 

and analysis to support these applications. However, direct development of navigation systems to provide great 

automation of drone operation has become a realistic aim, given the increasing capability of Deep Neural Networks 

(DNN) in computer vision, and its application to the related application area, vehicular autonomy. The work 

outlined in this paper is twofold:  

(1) It provides a common vocabulary around levels of drone autonomy, mapped against drone functionality. 

(2) It examines research works within these functionality areas, so as to provide an indexed top–down perspective of 

research activity in the autonomous drone navigation sector. With recent advances in hardware and software 

capability, Deep Learning has become very versatile and there is no shortage of papers involving its application 

to drone autonomy. While domain-knowledge engineered solutions exist that utilize precision GPS, lidar, image 

processing and/or computer vision to form a system for autonomous navigation, these solutions are not robust, 

have a high cost for implementation, and can require important subsystems to be present for optimal operation, such 

as network access. The focus in this paper is on navigation works that utilize Deep Learning or similar learning-based 

solutions as a basis for implementation of navigation tasks towards drone autonomy. Just as Deep Learning underpins 

the realization of self-driving cars, the ability of trained Deep Learning models to provide robust interpretation of 

visual and other sensor data in drones is critical to the ability of drones to reach fully autonomous navigation. This 

paper aims to highlight navigation functionality of research works in the autonomous drone navigation area, across the 

areas of environmental awareness, basic navigation and expanded navigation capabilities. While the general focus is 

on DNN-based papers, some non-DNN-based solutions are present in the collected papers for contrast. 

2. METHODOLOGY 

As a first step, we need to define the concept of autonomy for drones, with a view to recognising different levels of 

autonomous navigation. This paper identifies the emergent navigation features in current research against these 

levels. We apply the Six levels of autonomy standard published by the Society of Automation Engineers (SAE) 

International. Though the context of these levels was intended by SAE for autonomous ground vehicles, the logic 

can apply to any vehicle capable of autonomy. The concept of autonomy for cars and drones is similar, implying 

a gradual removal of driver roles in the navigation of obstacles and path finding. This, progressing to fully 

independent autonomous navigation regardless of restrictions due to surface bound movement or obstacles. By 

examining the SAE levels of autonomy for cars, we note how each level is directly applicable to drones. This 

provides a useful line of analysis for our overview In Figure 2, we set out the functionality of drone navigation, 
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mapped against these levels of autonomy. Autonomy starts at Level 1 with some features assisted, including 

GPS guidance, airspace detection and landing zone evaluation. These features are designed to provide automated 

support to a human operator. These features are already to be found in commercially available drones. Level 2 

autonomous features are navigational operations that are specific and use case dependent, where an operator must 

monitor but not continuously control. In the context of drone operation this can include features where the drone is 

directed to navigate autonomously if possible, e.g., the “follow me” and “track target” navigational commands. 

Some of these features are available in premium commercial products. Level 3 features allow for autonomous 

navigation in certain identified environments where the pilot is prompted for engagement when needed. At level 4 

the drone must navigate autonomously within most use cases without the need for human interaction. Level 5 

autonomy implies Level 4 autonomy but in all possible use cases, environments and conditions and as such is 

considered a theoretical ideal that is outside the scope of this overview. Though this paper aims at evaluating the 

features of papers in the context of Level 4 autonomy, it was found that the bulk of the papers approached in the 

research pool involved Level 2 or 3 autonomy, with the most common project archetype involving DNN training 

for autonomous navigation in a specific environment. 

a. Areas Of Work 

This encompasses any feature that is included in the referred solution as analysis of the drone’s spatial environment; 

though basic navigation features can be developed without this understanding, it limits the capability of the said 

navigation. Projects that do not include awareness features could lead to limited command capability and an over-

reliance on prediction; the feature mappings of the awareness section can be seen in Table 1. 

Spatial Evaluation (SE): The drone can account for the basic spatial limitations of its surrounding environment, 

such as walls or ceilings, allowing it to safely operate within an enclosed space. 

Obstacle Detection (ODe): The drone can determine independent objects, such asobstacles beyond the bounds of 

the previously addressed Spatial Evaluation, but does not make a distinction between those objects. 

Obstacle Distinction (ODi): The drone can identify distinct objects with independent properties or labels, e.g., 

identifying a target object and treating it differently from other objects or walls/floors in the environment. 

Autonomous Movement (AM): The drone has a navigation policy that allows it to fly without direct control from 

an operator; this policy can be represented in forms as simple as navigation commands such as “go forward” or as 

complex as a vector of steering angle and velocity in two dimensions that lie on the x–z plane. 

Collision Avoidance (CA): The drone’s navigation policy includes learned or sensedlogic to assist in avoiding 

collision with non-distinct obstacles. 

Auto Take-off/Landing (ATL): The drone is able to enact self-land and take-off rou- tines based on information 

from its awareness of the environment; this includes determining a safe spot to land and a safe thrust vector to take 

off from. 

3. MODELING AND ANALYSIS 

We identified that autonomous navigation features fall into three distinct groups: “Awareness”, which 

details the vehicle’s understanding of its surroundings, which can be collected via non-specific sensors; “Basic 

Navigation”, which includes the functionality expected from autonomous navigation, such as avoiding relevant 

obstacles and collision avoidance strategies; and “Expanded Navigation”, which covers features with a higher 

development depth such as pathway planning and multiple use case autonomous navigation. These groupings and their 

more detailed functional features are listed in Figure 3, as identified for Level 4 automation. In addition, we note that 

common engineering features are a useful category for this overview of navigation capability, and we include these as 

a fourth category for analysis. This is done to acknowledge projects in the research pool that are aimed at achieving a 

goal within a given hardware limitation, such as optimizations for lower-end hardware and independence from 

subsystems such as wireless networks. 
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A surprising result from the comparative analysis shows that there were few research projects with the environmental 

distinction feature. Of those that do, no project attempted to distinguish explicitly between two or more environments. 

Several projects did test their given implementations in various environs, but did not qualify as addressing the 

environmental distinction feature, as their approach did not provide consideration for the differences in those 

environments to be represented in the solution itself. There is no architecture modification to consider different 

environments, and there are no datasets 

 

4. RESULTS AND DISCUSSION 

The system is built using drone, minimizing the limitations associated with robots that are static. The use of drone 

makes the system more efficient than robots that have failed in disastrous conditions like the earthquake because when 

humans get stuck underneath the debris it makes it difficult for the robots to walk over the broken and ruined 

buildings. It is a real time autonomous drone technology system which is proposed for detecting humans in disastrous 

conditions and intimating the rescue team about the exact positions of the effected human. 

Quadcopter system works on the principle of air lifting phenomena with high pressure. The propellers force the air in 

downward with high pressure due to which an uplift force is created and as a result action reaction law is applied on 

the whole system. When this uplift force dominates the earth’s gravitational force, the whole system start flying in the 

air. But there is a problem with the rotation of propellers. If we rotate the propellers in clock wise direction then due to 

this rotation, a torque will be applied over the whole system in one direction .And similarly if we rotate the propellers 

in anti-clock wise direction then also a torque will be produced over the whole system and the whole system will start 
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rotating anticlockwise. To overcome this problem we rotate two propellers in clockwise direction and remaining two 

propellers in anticlockwise direction. This phenomenon produces torque in opposite direction and they get balanced 

and the system remains stable while flying. 

5. CONCLUSION 

Nowadays we see various types of natural calamities are being observed during recent years. These natural calamities 

cause impact on many buildings as well as to the human lives.The vulnerability is more in densely populated areas 

where the bad strike can lead to greater damage as well. To save these lives our rescue personnel faced many 

problems. They are unable to locate the victims of the disaster. So we came up this idea which can help the rescue 

personnel to locate the victims during unfortunate disastrous situation. Also it can actually help them to rescue the 

victim fastly. Our project basically comprises of a drone and human sensor which can easily locate the position as well 

as it is able to fly at that place where it is quite difficult to reach. We are trying to made prototype of this idea so it can 

help the rescue personnel in their mission to save lives. 

Natural calamities have recently opened their doors to disasters which in turn have affected various regions of the 

world. Disasters serve as an eye-opener as they are unstoppable and exceptional events which are either natural or 

manmade, such as earthquakes, wildfires, floods and terrorist attacks etc. These natural catastrophes many a times 

serve as a hats down chink in the armor as they lead to a massive death toll either because of people being stuck in the 

debris or due to no help received on time. One of the major challenges faced by the rescue and search teams during a 

massive disaster is the actual search of survivors and victims at the earliest and also reaching out to far off areas to 

make sure people are not stuck under the debris. 

This paper presents a real time autonomous drone technology system named “Human Sensor On Drone” that is 

capable of detecting humans in disastrous conditions. This system assists in the rescue process by identifying the exact 

location of the survivors at the earliest. As the system is a drone based system, it can easily be mobilized and 

controlled. This system comprises of a monitoring system along with a camera module and sensor unit to identify the 

existence of humans buried under the debris.  
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