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ABSTRACT 

Neuromorphic computing is a way of designing computers that takes inspiration from how our brains work. This method 

mimics the brain's structure and processes by using artificial neurons and synapses. Unlike traditional computers, which 

operate in a more rigid manner, neuromorphic systems process information in a way that feels more like human thinking. 

This approach is exciting because it could lead to computers that can learn and adapt in a brain-like way, which would 

be amazing for solving complex problems and understanding how our brains work. However, there are huge challenges. 

We need to figure out how the brain actually works, find new materials and ways to build these brain-like devices, create 

software that allows them to learn, and then build applications that can use these brain-like abilities. This paper provides 

a complete overview of neuromorphic computing, looking back at 35 years of research. We'll explore the different areas 

of research, including the brain-inspired models, the algorithms and learning methods, the hardware and devices, the 

supporting systems, and the applications. Finally, we'll talk about what needs to be done in the future to make 

neuromorphic computing a reality. The main goals are to give a thorough look at all the research that's been done in this 

field and to point out where more research is needed. Essentially, we want to see where we are and what we need to do 

to build these brain-like computers. 

Keywords: Memristors, IBM TrueNorth, Edge computing, Fault tolerance, Event-driven computation, Neural 

prosthetics, etc. 

1. INTRODUCTION 

Neuromorphic computing has been around since the 1980s, but it's really taken off in recent years. Initially, the focus 

was on building circuits with silicon-based transistors. However, there are challenges ahead when it comes to integrating 

these devices, primarily because they tend to consume a lot of energy. 

Neuromorphic computing stands out as a leading approach to mimic how our brains work, particularly thanks to its 

ability to handle tasks in parallel and respond to events as they happen. The human brain is efficient, using energy only 

when and where it’s necessary for processing information. Achieving similar energy efficiency and compactness in 

computing is challenging, particularly in how we process complex information using tightly packed neural networks 

that consume very little power. To make this a reality, we need to effectively integrate new device concepts that allow 

for high scalability and low power use, along with cutting-edge computing architectures. In today’s world of big data 

and AI, applications that require a lot of data are calling for hardware that uses a non von Neumann structure and can 

operate in a highly parallel manner. 

Recent advancements in nanodevice technology, especially in resistive random-access memory (RRAM) and 

ferroelectric field-effect transistors (FeFET), show a lot of potential for developing neuromorphic computing chips. 

These new devices promise improved performance in terms of energy and area     that complement traditional CMOS 

technologies. FeFETs can efficiently function as both neurons and synapses, and they show promise in neuromorphic 

computing based on coupled oscillators to tackle difficult problems, like NP-hard challenges. Meanwhile, RRAM serves 

as an excellent option for realizing synapses in neuromorphic chips. 

A neuromorphic computing system essentially engages in two key tasks: training and inference. During the training 

phase, the connection strengths (or weights) between synapses are continually updated. As a result, both the read and 

write capabilities of the memory devices are crucial for effectively training a neuromorphic system. 
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Figure 1: Areas of research involved in neuromorphic computing. 

Neuromorphic computing is a fascinating field that combines insights from neuroscience, computer science, and 

electrical engineering to create systems that mimic the way the human brain works. Research in this area spans multiple 

disciplines, each contributing to the development of brain-inspired computing technologies. Here are the main focused 

areas: 

- Neuroscience: This branch examines biological neural networks to inspire the creation of efficient artificial models. 

- Machine Learning & AI: Researchers in this area are developing neuromorphic algorithms that allow for energy-

efficient computation. - Hardware Design: This involves creating both analog and digital neuromorphic chips, like 

IBM's TrueNorth and Intel's Loihi. 

- Materials Science: This field investigates memristors and other innovative materials that can replicate brain-like 

synaptic behavior. 

• -VLSI & Circuit Design: The emphasis here is on designing architectures capable of low-power, parallel processing. 

• -Theoretical Modeling: Researchers work on mathematical including the fundamental electricinduced conductance 

mechanism and advanced techniques to simulate biological components and behavior, as well as current state-of-

the-art in intelligent applications built on PCRAM. frameworks for spiking neural networks (SNNs). 

• -Robotics & Edge Computing: This area focuses on applying neuromorphic principles to enable realtime, adaptive 

systems. 

2. OVERVIEW 

Neuromorphic computing is a way of designing computers to work more like the human brain. Instead of traditional 

computing methods, it uses artificial neurons to process information, similar to how brain cells communicate. 

 

Figure 2: History & Development of Neuromorphic Computing. 

The term “neuromorphic” can refer to different types of systems, including analog, digital, or a mix of both, as well as 

software that mimics brain functions like perception, movement, and sensory processing. Scientists have even found 

ways to replicate the nervous system using liquid chemical systems. A major goal of neuromorphic engineering is to 

understand how the structure of neurons and brain like circuits impact computing—how they process information, 

handle damage, learn, adapt, and evolve over time. This field combines knowledge from biology, physics, math, 

computer science, and electronics to create artificial neural systems. These systems are used in applications like vision 

processing, robotics, and auditory devices, all designed to function in ways similar to the human nervous system. The 

concept of neuromorphic engineering was first introduced by Carver Mead in the late 1980s. Since then, it has been a 

key area of research in building smarter, more efficient computing systems. 
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FEATURES 

Collocated processing and memory: Neuromorphic computer chips draw inspiration from the human brain. They 

process and store data together on each individual neuron. Traditional computers keep processing and memory separate. 

This separation creates the von Neumann bottleneck, limiting speed and energy use. Neural net processors and 

neuromorphic processors avoid this issue. Collocating processing and memory allows for high performance and low 

energy consumption. 

 

Figure 3: Illustration of Von Neumann architecture. 

Massively parallel: Neuromorphic chips use massive parallelism. Intel Lab's Loihi 2 can hold up to one million neurons. 

Each neuron can run different functions at the same time. Ideally, a neuromorphic computer could perform as many 

functions at once as it has neurons. This parallel function mirrors stochastic noise, which is seemingly random neuron 

firings in the brain. Standard computers struggle with stochastic noise. Neuromorphic computers are designed to handle 

it well, processing diverse inputs. 

 

Figure 4: Architecture of Neutral Network.[3] 

Inherently scalable: Neuromorphic computers are inherently scalable. Traditional computers face obstacles when 

increasing size. Neuromorphic systems grow by adding more chips, which increases the number of neurons. This avoids 

common scaling limits. Users can expand networks simply by adding more hardware. 

 

Figure 5: Neuromorphic Chip. 
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Event-driven computation: Event-driven computation also marks neuromorphic chips. Neurons and synapses compute 

only when they receive spikes from other neurons. Only neurons processing spikes use power. The rest of the computer 

stays idle, which makes for very efficient energy use. This differs from traditional computers that use power even when 

idle. 

 

Figure 6: Comparison between Biological and Artificial Neural Network. 

High in adaptability and plasticity: Adaptability and plasticity are key. Neuromorphic computers, like humans, are 

designed to adapt to changing inputs. Spiking neural network (SNN) architecture assigns each synapse a voltage output. 

It adjusts this output based on its task. SNNs develop connections in response to synaptic delays and neuron voltage 

thresholds. More plasticity means faster learning, problem-solving, and environmental adaptation. Researchers hope 

that will help solve problems. 

 

Figure 7: Structure of Spiking Neural Network. 

Fault tolerance: 

Neuromorphic computers are fault tolerant. Like the brain, information is held in many places. The failure of one part 

does not stop the whole computer from working. This contrasts with traditional systems, where a single point of failure 

can halt operation. Redundancy protects neuromorphic computers from errors. 

 

Figure 8: Traditional computer Model.[2] 
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3. APPLICATION 

Neuromorphic computing has wide-ranging applications across multiple domains: 

• Artificial Intelligence: Enhancing machine learning models with energy-efficient architectures. 

• Healthcare: Brain-computer interfaces and neural prosthetics. 

• Robotics: Autonomous systems that learn and adapt in real time. 

• Security & Defense: Advanced pattern recognition for surveillance and threat detection. 

• Edge Computing: Low-power AI for IoT devices, reducing reliance on cloud computing. 

4. KEY ADVANTAGES 

The limitations of conventional computing architectures, particularly in handling AI-driven workloads, necessitate a 

shift toward neuromorphic approaches. Key advantages include: 

• Energy Efficiency: Consumes significantly less power compared to traditional CPUs and GPUs. 

• Real-Time Learning: Supports adaptive learning with minimal external supervision. 

• Scalability: Provides an efficient pathway for building next-generation AI systems. 

• Challenges and Future Directions Despite its potential, neuromorphic computing faces several challenges: 

• Hardware Limitations: Developing large-scale neuromorphic chips remains complex and expensive. 

• Software Ecosystem: Lack of standardized programming frameworks for neuromorphic processors. 

• Scalability Issues: Ensuring that neuromorphic architectures can handle large-scale real-world tasks. 

5. CONCLUSION 

In conclusion, neuromorphic computing is an exciting direction for the future of technology. It has the potential to break 

through the limits of traditional computing and open up new opportunities in artificial intelligence and other areas. 

Neuromorphic computing is a field that tries to replicate how the human brain works in computers, using brain-like 

structures and processes to make machines smarter and more efficient. It’s still a developing area, but the potential is 

huge. By designing systems that learn and adapt like humans, neuromorphic computing could change how we build AI, 

robots, and devices in the future, making them faster, more energy-efficient, and more capable of handling complex 

tasks. In the end, neuromorphic computing is a step toward creating machines that think and learn in ways that are closer 

to human brains, leading to smarter technology. But there are still some challenges to overcome, such as improving the 

hardware and scaling these systems. As the field grows, it could play a big role in the next generation of computing, 

pushing the boundaries of what machines can do. 
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