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ABSTRACT 

With reinforcement learning powered by big data and computer infrastructure, data-centric AI is driving a 

fundamental shift in the way software is developed. To treat data as a first-class citizen on par with code, software 

engineering must be rethought in this situation. One surprise finding is how much time is spent on data preparation 

throughout the machine learning process. Even the most powerful machine learning algorithms will struggle to 

perform adequately in the absence of high-quality data. Advanced technologies that are data-centric are being used 

more frequently as a result. Unfortunately, a lot of real-world datasets are small, unclean, biased. In this paper, we 

focus on the scientific community for data collection and data quality for deep learning applications. Data collection is 

essential since modern algorithms for deep learning rely more on large-scale data collection than classification 

techniques. To enhance data quality, we investigate data validation, cleaning, and integration techniques. Even if the 

data cannot be completely cleaned, robust model training strategies enable us to work with imperfect data during 

training the model. Furthermore, despite the fact that these issues have gotten less attention in conventional data 

management studies, bias and fairness are significant themes in modern applications of machine learning. In order to 

prevent injustice, we investigate controls for fairness and strategies for doing so before, during, and after model 

training. 
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1. INTRODUCTION 

Deep learning frequently extracts knowledge from vast amounts of data. Natural language processing, healthcare, and 

self-driving cars are just a few of many applications. Deep learning has become so well-liked because of its 

exceptional performance when combined with the availability of vast amounts of data and robust computer 

infrastructure. IDC [1] says that by 2025, the total amount of data will have grown very quickly to 175 zetta bytes. 

Software can also do a lot of different tasks at superhuman speeds thanks to GPUs and TPUs that are very powerful. 

Machine learning is replacing software in software engineering, which is a fundamental paradigm shift [2]. Traditional 

software engineering includes all three phases — creating, implementing, and debugging code. In contrast, machine 

learning starts with data and trains a function on it. Specifically, the acquisition, cleaning, and preparation of 

information for machine learning training consumes 45% [3] or even 80–90% [4] of the total time. Additionally, the 

high-level code of a machine learning platform necessitates significantly fewer lines of code than that of conventional 

software. Finally, to keep the training model improving, hyperparameter tweaking may be needed. Businesses have 

actively developed this entire process—from data preparation to model deployment—and widely acknowledge it as a 

new software development paradigm. 

2. OVERVIEW OF THE STUDY 

Recently, data-centric AI [5] has become more popular. Its main goal is to improve data pre-processing for more 

accurate models, not the model training algorithm. Because of these trends, we need to look into problems with 

gathering and quality data for deep learning from the point of view of data-centric AI. From gathering data to 

deploying the model, Figure 1 shows a streamlined process from start to finish. Since deep learning systems are much 

more sophisticated [6], we only go over the most important steps here. Our talk will start with data collection. Deep 

learning needs more training data than traditional machine learning because feature engineering is not as problematic. 

Sadly, a lack of data and the challenge of articulating the learnt models discourage many businesses from 

implementing deep learning. The second topic is data cleaning and validation. Even though a lot is known about 

cleaning data, not all methods directly improve the performance of deep learning [7–10]. The data management 

community, in particular, must address a recent deep learning issue known as data poisoning. It's getting worse when 

attackers create data on purpose to make AI systems less accurate. This is called "data poisoning." In response, the 

goal of the field of study known as data sanitisation is to defend against such assaults [11–14]. Still, it is important for 

responsible AI to show that justice is against biassed data, in addition to cleaning and verifying data to make models 

more accurate. In fact, an increasing number of studies on data validation have acknowledged that advancing AI 

ethics, particularly justice, is an important subject for future research [15]. How to measure fairness and how to reduce 

unfairness are the main topics of model fairness research [16, 17], whether it's done before, during, or after training. 
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Model fairness and robustness are now being studied together because they are closely connected. For example, data 

bias and noise can affect each other in the same training data [18, 20, 25]. While the issues covered in this survey are 

diverse, we believe that to enhance data-centric AI, it is essential to have a thorough awareness of the data difficulties 

that arise during the deep learning process [19]. Each subtopic is not only significant but is also the subject of 

extensive community research. The data management community typically conducts research on data collection, 

cleaning, and validation [21–23]. The machine learning and security communities value robust model training a lot, 

while the machine learning and fairness communities value fair model training a lot. Because they work with a lot of 

data, the data management industry is doing a lot of research on topics like fairness and robustness [24]. 

 

Figure 1: Deep learning challenges in AI perspective 

3. DATA COLLECTION 

Because of a presentation [25] and a survey [26] that two of the authors did, the description of how the data was 

collected has been changed and shortened. There are three fundamental ways to collect data. Data acquisition is the 

process of locating, upgrading, or creating new datasets. The second problem is classifying data in an instructional 

manner so that a machine-learning model can learn from it. Because labelling costs a lot, other methods can be used, 

like crowdsourcing, poor supervision, and learning with only some supervision. Furthermore, we can improve existing 

data and models rather than starting from scratch with data collection or categorisation. 

3.1. Data Acquisition 

Data acquisition, or the process of locating datasets suitable for use in machine learning model training, is the first step 

to be taken in the situation of insufficient data. In this survey, we explore three techniques: data generation, data 

augmentation, and data discovery. Data discovery is the process of indexing and searching databases [27]. To 

construct fabricated instances, data augmentation manipulates or combines tagged samples. If there isn't enough data, 

the last option is to create datasets on one's own via crowdsourcing or synthetic data production techniques. 

3.1.1. Data Discovery 

The problem of indexing and searching datasets, either existing in corporate data lakes [28] or on the Web [29], is 

known as data discovery. One example is the Goods system [30], which searches tens of billions of datasets in 

Google's data lake. Goods use a post-hoc methodology to crawl datasets from diverse sources and extract information 

without the help of the dataset owners to create a single dataset library. Each entry in the catalogue contains details 

about a dataset, such as its size, provenance, who developed it, who read it, and its schema. Goods also provide dataset 

annotations, monitoring, and search. Google Dataset Search, a public version of Goods [31], supports science dataset 

searches. Recently, these data discovery tools have become more interactive. An interactive data management and 

search application built on top of the Jupyter Notebook platform for data science is Juneau [32], which serves as a 

suitable example. The key technological challenge in this scenario is locating the pertinent tables. Juneau employs 

similarity metrics that logically capture the objective of each data set's creation to compare records, schemas, and 

provenance information. Finding tables that can be joined or unioned effectively is essential when using data lakes, 

and LSH-based algorithms have been developed to perform set overlap search or unionable attribute retrieval on tables 

[33]. 

3.1.2. Data Generation 

Another way to collect or acquire fresh data is through generating it. It's usual to use crowdsourcing platforms like 

Amazon Mechanical Turk [34], where one can define tasks and pay people to generate or locate data. For instance, a 

task can direct workers to find face images of a particular demographic on public websites [35]. Some domains, like 

those involving mobility data and driving data, also benefit from the use of a simulator or generator. Two examples 

are Hermoupolis [36] and Crash to Not Crash [92]. Domain randomisation [37] is a potent technique for generating 

various realistic data from a simulator by altering its parameters. We can see that GANs also generate new data, but 

they require a sufficient amount of real data for training. 
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3.2. Data Labeling 

The next step is to label the instances if there are sufficient datasets. We discuss data labelling strategies for making 

use of pre-existing labels as well as for manually or automatically labelling data without labels [38]. 

3.2.1. Utilize Existing Labels 

The most common way to label things is called semi-supervised learning [39], and it tries to guess what labels will be 

given next by looking at the labels that have already been given. You can use the machine learning benchmarks that 

already exist [40], which provide labelled data for various tasks. Self-training [41] is the simplest type. In this method, 

a model is trained on the easy-to-find labelled data before being used on the unlabelled data. Once accepted, we add 

the forecasts with the highest confidence values to the training set. Although other approaches, including Tri-Training 

[42], Co-Learning [43], and Co-Training [34], do not make this assumption, this strategy is predicated on the notion 

that we may trust it with high confidence. 

3.2.2. Manual Labeling from No Labels 

If the company doesn't have any labelling to do but has the money to pay workers, they will often use crowdsourcing 

services like Amazon Mechanical Turk to do it. Given how important labelling is, there are services designed 

specifically for it, such as Google Cloud Labelling [45] as well as Amazon Contributory Factor Ground Truth [44]. 

Choosing labelling tasks, hiring labellers, and giving them the resources and assistance they require to classify the data 

are all possible with SageMaker. Because the workers don't always have the required expertise, crowdsourcing may 

not be feasible. Therefore, consult subject-matter experts only as a last resort due to their potential expense. 

3.2.3. Automatic Labeling from No Labels 

Weak supervision, which tries to (semi-)automatically create imperfect labels (henceforth referred to as "weak" 

labels), has gained favour recently. Weak supervision operates at a scale where another higher volume may make up 

for the lower labelling quality. Weak supervision is beneficial in applications when there are few or no labels to begin 

with. Early methods include crowdsourcing and distant supervision [46], which use outside knowledge sets to label 

training data. More recently, data programming has improved on these techniques by creating and combining many 

labelling algorithms that produce weak labels. 

3.2.4. Improving Existing Data 

Along with searching and sorting datasets, one can improve the quality of existing data and models. This method 

works well in various situations. Let's say the target application is innovative or complex, with no external datasets 

that are relevant, or where gathering more data no longer improves the model's accuracy due to its poor quality. A 

preferable choice in this case could be to enhance the available data. Relabelling is one efficient method of label 

improvement. Kristy Choi et al. [47] show how important it is to improve labels by looking at the model's accuracy 

over time with more training examples from datasets with different features. Even if more data are used, the model's 

accuracy plateaus as the quality of the data deteriorates rather than increasing. 

4. DATA VALIDATION, CLEANING, AND INTEGRATION 

Various errors are typically present in the training data. Through the use of data visualisation and schema construction 

techniques, data validation [48] capabilities in machine learning platforms like TensorFlow Extended (TFX) [49] 

enable the early discovery of such data errors. Data cleaning can be used to correct the data, and a wealth of literature 

[50] has been written about various integrity requirements. 

4.1. Data Validation 

Machine learning frequently uses data visualisation for data validation and finds it to be very effective [45]. A human 

may perform quick, critical sanity checks on the data using visualisation, which is more effective than traditional data 

cleaning and helps prevent later, more serious errors. A sample open-source programme called Facets [8] presents 

various statistics and dataset contents that can be used for data sanity checks to prevent more serious issues in the 

future. To gauge interest, See DB uses a utility metric with a deviation component. 

4.1.1. Schema-Based Validation 

Real life often uses schema-based validation [27]. TensorFlow Data Validation (TFDV) [36] bases its assumption on a 

continuous training environment that regularly provides input data. TFDV uses old data sets to build a data schema 

that it can use to look at new data sets and let users know about any problems with the data. 
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Figure 2: Tensorflow validation 

To potentially address the underlying cause of each abnormality, TFDV provides concrete action items. There is no 

summary of the metrics for the characteristics in this architecture, but there is one in a typical database schema. If a 

new dataset is different from the old schema, the user must then decide whether to change the schema or fix the data. 

5. DATA CLEANING 

Data cleaning has a long tradition of removing various well-defined flaws by meeting integrity criteria, including 

critical obstacles, domain restrictions, referential constraints, and abilities. 

6. ROBUST MODEL TRAINING 

Even after properly cleaning and collecting the data, errors can still occur. This can happen during model training. 

Real-world datasets are considered imprecise and erroneous, despite the process of data cleaning. Can the machine-

learning model learn from the data and make predictions as if it were clean? We need to address the primary inquiry. 

In the event that we can't get back all of the clean data, the goal is to create machine learning algorithms that can 

handle even the worst data corruption. It focuses on data feature corruptions. 

6.1. Noisy Features 

Adversarial attacks commonly introduce noisy features. We focus on the arsenic attack, also known as contaminating 

the training data, to adhere to the core theme of our study. An attacker tries to taint the training data of a machine-

learning model by adding data that was purposely made to trick the training process, even while the model is still 

being trained. External conditions, like colour, noise and image blurring that might not be removed by data cleaning, 

can also contribute to noisy features in addition to adversarial noise. 

6.2. Missing Features 

Data imputation has been a controversial topic in both statistics and machine learning because missing data can make 

results less significant and predictions less accurate. Any kind of data can be useful, but researchers are focussing on 

multivariate time information in this work because of the high current rate and frequent sensor failures that leave 

values blank. 

7. FAIR MODEL TRAINING 

Now that the focus is on model fairness, biassed data can lead to a discriminating and consequently unjust model. 

Robust training of the model, a closely related problem, aims to address bias rather than disrupt the learning algorithm. 

One well-known example is the Northpointe COMPAS tool, which predicts a defendant's chance of committing 

another crime. Other well-known examples include an AI-based approach that excludes prospective employees based 

on their gender [3], an AI-based picture viewer that incorrectly classifies people as belonging to a particular race [10], 

and more. These events gave rise to the study of algorithmic fairness. Different factors can be at play in COMPAS' 

prejudice. The training data may be biased in cases where there is more information available for a certain group. It's 

possible that factors outside of race contributed more to crime than race itself. We can question even the fairness 

metric if it fails to accurately reflect reality. Fairness analysis is typically a very complicated subject that includes 

factors not seen in the data. The current fair ML book [26] covers fairness and ethics in detail, so here we only 

concentrate on fairness concerns and their technical solutions. We go over how to assess fairness and minimise 

unfairness in particular detail. 

8. CONVERGENCE WITH ROBUSTNESS TECHNIQUES 

Methods for fairness and robustness have recently begun to converge. This direction is inevitable because both 

approaches deal with data challenges, but neither one supersedes the other. Fair training just focuses on removing the 

bias from the data and presumes that it is unadulterated. The sensitive feature itself could be unclear or even absent. 

However, robust training places more emphasis on raising accuracy overall and ignores differences in performance 

among different sensitive groups. Fairness and strength are typically not antithetical principles. Figure 3 depicts these 

processes. 
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Figure 3: Fairness and robustness issue 

There are three ways for convergence to happen: by making fair procedures more robust (fairness-oriented), by 

making robust techniques more fair (robust-oriented), or by combining training methods that are both fair and robust. 

We summarise the most recent research for each of the three tactics. 

8.1. Fairness-oriented Approaches 

The first step towards convergence is to increase the dependability of fair training. Currently, we employ two methods 

for conducting this research: either when the sensitive group information is unclear or completely absent. If some 

users actively disregard or hide their group affiliations, the first scenario might occur. This was shown by looking at 

the results of fair training on noisy sensitive group information. In the second case, the sensitive attribute has been 

completely removed. The data collection procedure in this situation occasionally fails to obtain related data due to 

several circumstances, including legal restrictions. The objective is to roughly minimise the worst-case (latent) group 

loss by identifying the worst-performing samples (Figure 4) and assigning them a greater weight. 

This is done by assuming that sensitive traits that aren't seen are connected to the characteristics and labels. 

Robustness-Centred Techniques, we plan robust training to improve a model's general accuracy,but it may 

discriminate.The data collection procedure in this situation occasionally fails to obtain related data due to several 

circumstances, including legal restrictions. The objective is to roughly minimise the worst-case (latent) group loss by 

identifying the worst-performing samples (Figure 4) and assigning them a greater weight. This is done by assuming 

that sensitive traits that aren't seen are connected to the characteristics and labels. Robustness-Centred Techniques We 

plan robust training to improve a model's general accuracy, but it may discriminate. 

 

Figure :4 DRO based fair Algorithm 

 

Figure 5: Self training techniques 
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Similar Fusions Equitable training that is both effective and fair is possible. One goal is to simultaneously make the 

model learning fair and reliable. According to FR-Train, there is a competition between a classifier, a discriminative 

model for fairness, and a classification algorithm for robustness to make the classifiers fair and robust (Figure 6). A 

new sample selection method picks training samples that are fair and reliable so that the model can be trained correctly 

(Figure 7). This approach does not require changing the model or using more recent data. 

Label sounds that depend on groups are less harmful because the fake loss is more like the real loss. Playing the role 

of an enemy and coming up with attacks that hurt both accuracy and fairness is another method for assuring accurate 

and equitable training. 

 

Figure 6: FR Training 

 

Figure 7: Adaptive sample selection 

9. OVERALL FINDINGS AND FUTURE DIRECTIONS 

We have listed our findings. We discussed the three phases of data collection strategies: data collection, data labelling, 

and data and model enhancement. The machine learning community has studied some of the strategies, while the data 

management community has studied others. We covered the key methods for data integration, cleaning, sanitisation, 

and validation. Visualisations and schema knowledge can facilitate data validation. Primarily focus on improving 

model accuracy, but data cleaning has received substantial investigation. Data sanitisation has a special flavour in that 

it can defend against attacks with poison. Data integration is a hurdle when dealing with multimodal data. We 

discussed how noisy or missing labels lead to poor generalisations based on test data. Accumulated noise or partial 

focus on training data now limits research on noisy labelling. Hybrid and semi-supervised techniques can achieve very 

high accuracy even with noisy training data. Researchers are actively developing self- and semi-supervised methods to 

leverage massive volumes of unlabelled data. We talked about convergence with robustness processes, techniques for 

reducing unfairness, and fairness evaluations. We can perform the mitigation either before, during, or after the model 

training. When it is possible to change the training data, pre-processing becomes advantageous. Processing becomes 

beneficial when we have the ability to modify the training algorithm. When we cannot alter the data or the model 

training, we may resort to post-processing. We can distinguish between fair and robust types of convergence in 

robustness techniques. 

10. CONCLUDING REMARK 

Deep learning will become even more important in the future of data-centric AI as it becomes more important to 

collect data and make it better. The four key topics we discussed were data collection, data filtering, validation and 

integration, robust model construction, and fair model training. Many communities have explored these topics, but 

they need to work together. Our poll is meant to help the growth of data-centric AI. Eventually, we think that all data 

approaches will come together with fair and effective training methods. 
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