

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 2503-2515

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 2503

DETECTION OF PHISHING WEBSITES USING MACHINE LEARNING

Mr. V. Chandra Sekhar Reddy1, Dasari Likhitha2, Syed Nawaz Hussain3,

Varikuppala Vinod Kumar4, Akhil Reddy Karnati5
1Associate. Professor, CSE Dept, ACE Engineering College, Hyderabad, India.

2,3,4,5Student, CSE Dept, ACE Engineering College, Hyderabad, India.

ABSTRACT

Phishing attack is a simplest way to obtain sensitive information from innocent users. Aim of the phishers is to acquire

critical information like username, password and bank account details. Cyber security persons are now looking for

trustworthy and steady detection techniques for phishing websites detection. This deals with machine learning

technology for detection of phishing URLs by extracting and analyzing various features of legitimate and phishing

URLs. Decision Tree, random forest and Support vector machine algorithms are used to detect phishing websites. Aim

of the paper is to detect phishing URLs as well as narrow down to best machine learning algorithm by comparing

accuracy rate, false positive and false negative rate of each algorithm. A web service is one of the most important

Internet communications software services. Using fraudulent methods to get personal information is becoming

increasingly widespread these days. However, it makes our lives easier, it leads to numerous security vulnerabilities to

the Internet's private structure. Web phishing is just one of the many security risks that web services face. Phishing

assaults are usually detected by experienced users however, security is a primary concern for system users who are

unaware of such situations. Phishing is the act of portraying malicious web runners as genuine web runners to obtain

sensitive information from the end-user. Phishing is currently regarded as one of the most dangerous threats to web

security. Vicious Web sites significantly encourage Internet criminal activity and inhibit the growth of Web services.

As a result, there has been a tremendous push to build a comprehensive solution to prevent users from accessing such

websites. Our technology merely examines the Uniform Resource Locator (URL) itself, not the content of Web pages.

As a result, it detects the fake or fraud websites. When compared to a blacklisting service, our approach performs

better on generality and content since it uses learning techniques.

1. INTRODUCTION

The aim is to contribute to developing a more secure digital environment by offering an advanced approach to

phishing site detection. By accurately identifying and mitigating phishing threats, the proposed model will enhance the

safety and trustworthiness of online interactions, protecting users from falling victim to phishing attacks. Phishing is a

fraudulent technique that uses social and technological tricks to steal customer identification and financial credentials.

early stages, making timely detection a critical factor in successful treatment.

Social media systems use spoofed e-mails from legitimate companies and agencies to enable users to use fake

websites to divulge financial details like usernames and passwords. Hackers install malicious software on computers to

steal credentials, often using systems to intercept username and passwords of consumers’ online accounts. Phishers use

multiple methods, including email, Uniform Resource Locators (URL), instant messages, forum postings, telephone

calls, and text messages to steal user information. The structure of phishing content is similar to the original content

and trick users to access the content in order to obtain their sensitive data. The primary objective of phishing is to gain

certain personal information for financial gain or use of identity theft. Phishing attacks are causing severe economic

damage around the world.

2. OBJECTIVES

To enhance the effectiveness of phishing website detection, several key considerations must be addressed. Firstly,

accuracy is paramount; developing algorithms or models capable of accurately distinguishing phishing websites from

legitimate ones is essential to minimize false positives and false negatives. Real- time or near-real-time detection

mechanisms should be implemented to identify phishing websites promptly as they are created or accessed. Feature

engineering plays a critical role, as identifying relevant features or indicators, such as URL structure, SSL certificates,

and website content, can significantly aid in distinguishing phishing sites. Machine learning techniques, including

supervised or unsupervised learning, can be employed to automatically classify websites based on these identified

features. Scalability is crucial, ensuring that the detection system can efficiently handle large volumes of web traffic,

as phishing attacks can scale rapidly.

User education is also vital, implementing measures to educate and alert users about potential phishing risks when they

visit suspicious websites. Data sources must be collected and maintained, comprising up-to-date datasets of known

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 2503-2515

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 2504

phishing websites and legitimate websites to train and evaluate detection models effectively. Integration with web

browsers, email clients, and other relevant software is necessary to provide proactive protection to users.

PROBLEM STATEMENT

Phishing attacks pose a significant threat to cybersecurity, exploiting both social engineering and technological

vulnerabilities to steal sensitive information. This project aims to develop an advanced approach to detecting phishing

sites, thereby bolstering the security of online interactions and safeguarding users from falling victim to fraudulent

activities. By accurately identifying and mitigating phishing threats, the proposed model seeks to enhance the safety

and trustworthiness of digital environments. Phishing tactics encompass a wide range of methods, including spoofed

emails, fraudulent websites, and malicious software, all aimed at deceiving users into divulging personal and financial

credentials. Through the utilization of innovative techniques and algorithms, this model aims to effectively distinguish

between legitimate and phishing websites, thereby thwarting potential cyberattacks and minimizing economic damage

on a global scale.

Phishing attacks continue to pose a significant threat to individuals, organizations, and online users worldwide.

Phishing websites mimic legitimate websites to deceive users into disclosing sensitive information such as login

credentials, financial data, or personal information. Traditional phishing detection methods often rely on manual

inspection or signature- based approaches, which are limited in their ability to detect new and evolving phishing

tactics.

3. LITERATURE SURVEY

The detection of malicious URLs has become increasingly important in the realm of cybersecurity due to the rising

prevalence of cyber threats such as phishing attacks, malware distribution, and website defacement. In recent years,

researchers have employed various machine learning techniques to effectively classify URLs into different categories

based on their malicious intent. This literature survey aims to provide an overview of existing methodologies and

approaches utilized in the field of malicious URL detection.

Feature Engineering:

Feature engineering plays a crucial role in the successful detection of malicious URLs. Researchers have explored

various lexical, structural, and semantic features derived from URLs to represent their characteristics effectively.

Lexical features, such as domain length, presence of special characters, and domain age, have been widely used due to

their simplicity and effectiveness in capturing malicious patterns.Reference:

Nappa, D., et al. "A Machine Learning Approach for Detection of Malicious URLs." IEEE Transactions on Dependable

and Secure Computing, vol. 15, no. 3, 2018, pp. 460-472.

Machine Learning Algorithms:

Supervised machine learning algorithms have been extensively employed for the classification of URLs into benign and

malicious categories. Boosting algorithms, such as XGBoost, Light GBM, and Gradient Boosting Machines, have

demonstrated superior performance in handling imbalanced datasets and achieving high accuracy in malicious URL

detection tasks.References:

Tian, Y., et al. "URLNet: Learning a URL Representation with Deep Learning for Malicious URL Detection." IEEE

Transactions on Information Forensics and Security, vol. 14, no. 5, 2019, pp. 1175-1186.

Zhang, J., et al. "Malicious URL Detection Using Machine Learning: A Comparative Study." IEEE Access, vol. 8,

2020, pp. 17206-17219.

Dataset Curation:

Building a comprehensive and diverse dataset is essential for training robust machine learning models for malicious

URL detection. Researchers have utilized a combination of publicly available datasets, domain blacklists, and

crowdsourced repositories to collect a large corpus of URLs spanning different categories of malicious activities.

Reference:

Ma, J., et al. "Beyond Blacklists: Learning to Detect Malicious Web Sites from Suspicious URLs." Proceedings of the

15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009, pp. 1245-1254.

Ensemble Techniques:

Ensemble learning techniques have been employed to improve the overall performance and generalization ability of

malicious URL detection models. Ensemble methods combine predictions from multiple base classifiers to mitigate

overfitting and enhance the robustness of the final classification.reference:

Wei, Q., et al. "Malicious URL Detection Based on Ensemble Learning." International Conference on Security and

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 2503-2515

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 2505

Privacy in Communication Networks, 2017, pp. 161-176.In summary, the literature on malicious URL detection

encompasses a wide range of approaches, including feature engineering, machine learning algorithms, dataset

curation, and ensemble techniques. By leveraging these methodologies, researchers continue to advance the state-of-

the-art in the field of cybersecurity, striving to develop more accurate and reliable solutions for identifying and

mitigating malicious online threats.

4. PROPOSED SYSYTEM

The proposed system focuses on leveraging machine learning (ML) to automate the detection of phishing websites. It

will extract relevant features like URL length, domain age, HTTPS presence, subdomain usage, sensitive keyword

presence, HTML and JavaScript analysis, and website content analysis from each website in the dataset. Once the

model achieves satisfactory performance, it will be deployed in a production environment to actively analyze

incoming URLs in real-time. A user-friendly interface will be developed to present phishing detection results to users.

To bolster user protection, the system can be integrated into popular web browsers as an extension or merged into

existing security tools and antivirus software. This integration will provide users with real-time alerts when accessing

potentially harmful websites. By integrating advanced algorithms with thorough

 feature analysis, the system aims to provide an effective and precise solution for identifying phishing websites. It

seeks to reduce the risks associated with phishing attacks and bolster overall cybersecurity measures.

5. HARDWARE AND SOFTWARE REQUIREMENTS

5.1 HARDWARE REQUIREMENTS:

• Processor – Pentium IV

• RAM – 4 GB (min)

• Hard Disk – 20 GB

• Key Board – Standard Windows Keyboard

• Mouse – Two or Three Button Mouse

• Monitor – SVGA

5.2 SOFTWARE REQUIREMENTS:

• Operating system – Windows 7, 8, 10, 11, Mac OS

• Coding Language – Python

• Back-End – Python.

PACKAGES USED

pandas (imported as pd): For data manipulation and analysis. itertools: For creating iterators for efficient looping.

sklearn. metrics

classification_ report: For generating a classification report including precision, recall, F1-score, support.

confusion_ matrix: For computing the confusion matrix to evaluate the accuracy of classification. Accuracy score:

For computing the accuracy classification

score.

sklearn. model_ selection:

train_ test_ split: For splitting arrays or matrices into random train and test subsets.

numpy (imported as np): For numerical computing. matplotlib. pyplot (imported as plt): For creating static,

interactive, and animated visualizations.

Xg boost: For implementing the XGBoost algorithm for gradient boosting.

lightgbm:

LGBM Classifier: For implementing the Light GBM algorithm, a gradient boosting framework that uses tree-

based learning.

os: For interacting with the operating system, such as reading or writing files.

seaborn (imported as sns):

For statistical data visualization. wordcloud: For creating word clouds, which visualize word frequency in a given

text.

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 2503-2515

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 2506

ALGORITHM

• Datasets containing phishing and legitimate websites is collected from open-source platform Phish Tank.

• Write a code to extract the required features from the URL database.

• Analyse and preprocess the dataset by using EDA techniques.

• Divide the dataset into training and testing sets.

• Run selected machine learning and deep neural network algorithms on the dataset like Decision Tree,

Random Forest,

• Multilayer Perceptron’s, XGBoost, Autoencoder Neural Networks and Support Vector Machines on the

dataset.

• Write a code for displaying the evaluation result considering accuracy metrics.

• Compare the obtained results for trained models and specify which is better.

SOURCE CODE:

import pandas as pd import itertools

from sklearn.metrics import classification_report,confusion_matrix, accuracy_score from sklearn.model_selection

import train_test_split import pandas as pd

import numpy as np

import matplotlib.pyplot as plt import xgboost as xgb

from lightgbm import LGBMClassifier import os

import seaborn as sns

from wordcloud import WordCloud df=pd.read_csv('malicious_phish.csv')

print(df.shape) df.head() df.type.value_counts()

df_phish = df[df.type=='phishing'] df_malware = df[df.type=='malware'] df_deface = df[df.type=='defacement']

df_benign = df[df.type=='benign'] phish_url = " ".join(i for i in df_phish.url) wordcloud = WordCloud(width=1600,

height=800,colormap='Paired').generate(phish_url) plt.figure(figsize=(12,14),facecolor='k') plt.imshow(wordcloud,

interpolation='bilinear') plt.axis("off")

plt.tight_layout(pad=0) plt.show()

malware_url = " ".join(i for i in df_malware.url) wordcloud = WordCloud(width=1600,

height=800,colormap='Paired').generate(malware_url) plt.figure(figsize=(12,14),facecolor='k') plt.imshow(wordcloud,

interpolation='bilinear') plt.axis("off")

plt.tight_layout(pad=0) plt.show()

deface_url = " ".join(i for i in df_deface.url) wordcloud = WordCloud(width=1600,

height=800,colormap='Paired').generate(deface_url) plt.figure(figsize=(12,14),facecolor='k') plt.imshow(wordcloud,

interpolation='bilinear') plt.axis("off")

plt.tight_layout(pad=0) plt.show()

benign_url = " ".join(i for i in df_benign.url) wordcloud = WordCloud(width=1600,

height=800,colormap='Paired').generate(benign_url) plt.figure(figsize=(12,14),facecolor='k') plt.imshow(wordcloud,

interpolation='bilinear')

 plt.axis("off") plt.tight_layout(pad=0) plt.show()

import re

#Use of IP or not in domain def having_ip_address(url):

match = re.search(

'(([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\.([01]?\\d\\d?|2[0-

4]\\d|25[0-5])\\.([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\.'

'([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\/)|' # IPv4

'((0x[0-9a-fA-F]{1,2})\\.(0x[0-9a-fA-F]{1,2})\\.(0x[0-9a-

fA-F]{1,2})\\.(0x[0-9a-fA-F]{1,2})\\/)' # IPv4 in hexadecimal

'(?:[a-fA-F0-9]{1,4}:){7}[a-fA-F0-9]{1,4}', url) # Ipv6

if match:

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 2503-2515

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 2507

print match.group() return 1

else:

print 'No matching pattern found' return 0

df['use_of_ip'] = df['url'].apply(lambda i: having_ip_address(i)) from urllib.parse import urlparse

def abnormal_url(url):

hostname = urlparse(url).hostname hostname = str(hostname)

match = re.search(hostname, url) if match:

print match.group() return 1

else:

print 'No matching pattern found' return 0

df['abnormal_url'] = df['url'].apply(lambda i: abnormal_url(i)) from googlesearch import search

def google_index(url): site = search(url, 5) return 1 if site else 0

df['google_index'] = df['url'].apply(lambda i: google_index(i)) def count_dot(url):

count_dot = url.count('.') return count_dot

df['count.'] = df['url'].apply(lambda i: count_dot(i)) df.head()

def count_www(url): url.count('www')

return url.count('www')

df['count-www'] = df['url'].apply(lambda i: count_www(i)) def count_atrate(url):

return url.count('@')

df['count@'] = df['url'].apply(lambda i: count_atrate(i)) def no_of_dir(url):

urldir = urlparse(url).path return urldir.count('/')

df['count_dir'] = df['url'].apply(lambda i: no_of_dir(i)) def no_of_embed(url):

urldir = urlparse(url).path return urldir.count('//')

df['count_embed_domian'] = df['url'].apply(lambda i: no_of_embed(i))

def shortening_service(url):

match =

re.search('bit\.ly|goo\.gl|shorte\.st|go2l\.ink|x\.co|ow\.ly|t\.co|tiny url|tr\.im|is\.gd|cli\.gs|'

'yfrog\.com|migre\.me|ff\.im|tiny\.cc|url4\.eu|twit\.ac|su\.pr|twurl\

.nl|snipurl\.com|'

'short\.to|BudURL\.com|ping\.fm|post\.ly|Just\.as|bkite\.com|snip r\.com|fic\.kr|loopt\.us|'

'doiop\.com|short\.ie|kl\.am|wp\.me|rubyurl\.com|om\.ly|to\.ly|bit\

.do|t\.co|lnkd\.in|'

'db\.tt|qr\.ae|adf\.ly|goo\.gl|bitly\.com|cur\.lv|tinyurl\.com|ow\.ly| bit\.ly|ity\.im|'

'q\.gs|is\.gd|po\.st|bc\.vc|twitthis\.com|u\.to|j\.mp|buzurl\.com|cutt

\.us|u\.bb|yourls\.org|'

'x\.co|prettylinkpro\.com|scrnch\.me|filoops\.info|vzturl\.com|qr\. net|1url\.com|tweez\.me|v\.gd|'

'tr\.im|link\.zip\.net', url)

if match:

return 1 else:

return 0

df['short_url'] = df['url'].apply(lambda i: shortening_service(i)) def count_https(url):

return url.count('https')

df['count-https'] = df['url'].apply(lambda i : count_https(i)) def count_http(url):

return url.count('http')

df['count-http'] = df['url'].apply(lambda i : count_http(i)) def count_per(url):

return url.count('%')

df['count%'] = df['url'].apply(lambda i : count_per(i)) def count_ques(url):

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 2503-2515

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 2508

return url.count('?')

df['count?'] = df['url'].apply(lambda i: count_ques(i)) def count_hyphen(url):

return url.count('-')

df['count-'] = df['url'].apply(lambda i: count_hyphen(i)) def count_equal(url):

return url.count('=')

df['count='] = df['url'].apply(lambda i: count_equal(i)) def url_length(url):

return len(str(url)) #Length of URL

df['url_length'] = df['url'].apply(lambda i: url_length(i)) #Hostname Length

def hostname_length(url):

return len(urlparse(url).netloc)

df['hostname_length'] = df['url'].apply(lambda i: hostname_length(i))

df.head()

def suspicious_words(url):

match =

re.search('PayPal|login|signin|bank|account|update|free|lucky|ser vice|bonus|ebayisapi|webscr',

url)

if match:

return 1 else:

return 0

df['sus_url'] = df['url'].apply(lambda i: suspicious_words(i)) def digit_count(url):

digits = 0 for i in url:

if i.isnumeric(): digits = digits + 1

return digits

df['count-digits']= df['url'].apply(lambda i: digit_count(i)) def letter_count(url):

letters = 0 for i in url:

if i.isalpha():

letters = letters + 1 return letters

df['count-letters']= df['url'].apply(lambda i: letter_count(i)) df.head()

#Importing dependencies

from urllib.parse import urlparse from tld import get_tld

import os.path

#First Directory Length def fd_length(url):

urlpath= urlparse(url).path try:

return len(urlpath.split('/')[1]) except:

return 0

df['fd_length'] = df['url'].apply(lambda i: fd_length(i)) #Length of Top Level Domain

df['tld'] = df['url'].apply(lambda i: get_tld(i,fail_silently=True)) def tld_length(tld):

try:

return len(tld) except:

return -1

df['tld_length'] = df['tld'].apply(lambda i: tld_length(i)) df = df.drop("tld",1)

df.columns df['type'].value_counts() import seaborn as sns sns.set(style="darkgrid")

ax = sns.countplot(y="type", data=df,hue="use_of_ip") sns.set(style="darkgrid")

ax = sns.countplot(y="type", data=df,hue="abnormal_url") sns.set(style="darkgrid")

ax = sns.countplot(y="type", data=df,hue="google_index") sns.set(style="darkgrid")

ax = sns.countplot(y="type", data=df,hue="short_url") sns.set(style="darkgrid")

ax = sns.countplot(y="type", data=df,hue="sus_url") sns.set(style="darkgrid")

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 2503-2515

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 2509

ax = sns.catplot(x="type", y="count.", kind="box", data=df) sns.set(style="darkgrid")

ax = sns.catplot(x="type", y="count-www", kind="box", data=df) sns.set(style="darkgrid")

ax = sns.catplot(x="type", y="count@", kind="box", data=df)\ sns.set(style="darkgrid")

ax = sns.catplot(x="type", y="count_dir", kind="box", data=df) sns.set(style="darkgrid")

ax = sns.catplot(x="type", y="hostname_length", kind="box", data=df)

sns.set(style="darkgrid")

ax = sns.catplot(x="type", y="fd_length", kind="box", data=df) sns.set(style="darkgrid")

ax = sns.catplot(x="type", y="tld_length", kind="box", data=df) from sklearn.preprocessing import LabelEncoder

lb_make = LabelEncoder()

df["type_code"] = lb_make.fit_transform(df["type"]) df["type_code"].value_counts()

#Predictor Variables

filtering out google_index as it has only 1 value

X = df[['use_of_ip','abnormal_url', 'count.', 'count-www', 'count@',

'count_dir', 'count_embed_domian', 'short_url', 'count-https', 'count-http', 'count%', 'count?', 'count-', 'count=',

'url_length', 'hostname_length', 'sus_url', 'fd_length', 'tld_length', 'count-

digits',

count-letters']] #Target Variable

y = df['type_code'] X.head() X.columns

X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.2,shuffle=True, random_state=5)

from sklearn.ensemble import RandomForestClassifier

rf =

RandomForestClassifier(n_estimators=100,max_features='sqrt') rf.fit(X_train,y_train)

y_pred_rf = rf.predict(X_test) print(classification_report(y_test,y_pred_rf,target_names=['beni gn',

'defacement','phishing','malware']))

cm = confusion_matrix(y_test, y_pred_rf) cm_df = pd.DataFrame(cm,

index = ['benign', 'defacement','phishing','malware'], columns = ['benign',

'defacement','phishing','malware']) plt.figure(figsize=(8,6)) sns.heatmap(cm_df, annot=True,fmt=".1f")

plt.title('Confusion Matrix') plt.ylabel('Actal Values') plt.xlabel('Predicted Values')

plt.show()

feat_importances = pd.Series(rf.feature_importances_, index=X_train.columns)

feat_importances.sort_values().plot(kind="barh",figsize=(10, 6)) lgb

LGBMClassifier(objective='multiclass',boosting_type= 'gbdt',n_jobs = 5, random_state=5)

LGB_C = lgb.fit(X_train, y_train) y_pred_lgb = LGB_C.predict(X_test)

 print(classification_report(y_test,y_pred_lgb,target_names=['ben ign', 'defacement','phishing','malware']))

cm = confusion_matrix(y_test, y_pred_lgb) cm_df = pd.DataFrame(cm,

index = ['benign', 'defacement','phishing','malware'], columns = ['benign',

'defacement','phishing','malware']) plt.figure(figsize=(8,6)) sns.heatmap(cm_df, annot=True,fmt=".1f")

plt.title('Confusion Matrix') plt.ylabel('Actal Values') plt.xlabel('Predicted Values')

plt.show()

feat_importances = pd.Series(lgb.feature_importances_, index=X_train.columns)

feat_importances.sort_values().plot(kind="barh",figsize=(10, 6)) xgb_c = xgb.XGBClassifier(n_estimators= 100)

xgb_c.fit(X_train,y_train)

y_pred_x = xgb_c.predict(X_test) print(classification_report(y_test,y_pred_x,target_names=['benig n',

'defacement','phishing','malware']))

cm = confusion_matrix(y_test, y_pred_x) cm_df = pd.DataFrame(cm,

index = ['benign', 'defacement','phishing','malware'], columns= ['benign',

'defacement','phishing','malware']) plt.figure(figsize=(8,6)) sns.heatmap(cm_df, annot=True,fmt=".1f")

plt.title('Confusion Matrix') plt.ylabel('Actal Values') plt.xlabel('Predicted Values')

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 2503-2515

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 2510

plt.show()

feat_importances = pd.Series(xgb_c.feature_importances_, index=X_train.columns)

feat_importances.sort_values().plot(kind="barh",figsize=(10, 6)) def main(url):

status = [] status.append(having_ip_address(url)) status.append(abnormal_url(url)) status.append(count_dot(url))

status.append(count_www(url)) status.append(count_atrate(url)) status.append(no_of_dir(url))

status.append(no_of_embed(url)) status.append(shortening_service(url)) status.append(count_https(url))

status.append(count_http(url)) status.append(count_per(url)) status.append(count_ques(url))

status.append(count_hyphen(url)) status.append(count_equal(url)) status.append(url_length(url))

status.append(hostname_length(url)) status.append(suspicious_words(url)) status.append(digit_count(url))

status.append(letter_count(url)) status.append(fd_length(url))

tld = get_tld(url,fail_silently=True)

status.append(tld_length(tld)) return status

def get_prediction_from_url(test_url): features_test = main(test_url)

Due to updates to scikit-learn, we now need a 2D array as a parameter to the predict function.

features_test = np.array(features_test).reshape((1, -1)) pred = lgb.predict(features_test)

if int(pred[0]) == 0:

res="SAFE" return res

elif int(pred[0]) == 1.0:

res="DEFACEMENT"

return res

elif int(pred[0]) == 2.0:

res="PHISHING"

return res

elif int(pred[0]) == 3.0: res="MALWARE"

return res

urls = ['titaniumcorporate.co.za','www.youtube.com'] for url in urls:

print(get_prediction_from_url(url))

6. OUTPUT

Fig .1 import the dataset using the pandas library and check the sample entries in the dataset.

Fig .2 after creating features the dataset

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 2503-2515

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 2511

Fig .3 dataset looks like above

Fig.4 Distribution of use of IP

Fig.5 Distribution of Abnormal URL

Fig .6 Distribution of Google Index

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 2503-2515

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 2512

Fig .7 Distribution of Short URL's

Fig .8 Distribution of Suspicious URL

Fig .9 Distribution of count of [.] dot

Fig .10 Distribution of count-www

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 2503-2515

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 2513

Fig .11 Distribution of hostname length

Fig .12 Random Forest Classifier

Fig .13 Confusion Matrix for Random Forest Classifier

Fig .14 Confusion Matrix for Light BGM Classifier

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 2503-2515

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 2514

Fig .15 Confusion Matrix for XGBoost Classifier

Fig .16 Final Output of Predection of the given URL

7. TESTING

We have split the dataset into 80:20 ratio i.e., 80% of the data was used to train the machine learning models, and the

rest 20% was used to test the model.As we know we have an imbalanced dataset. The reason for this is around 66% of

the data has benign URLs, 5% malware, 14% phishing, and 15% defacement URLs. So after randomly splitting the

dataset into train and test, it may happen that the distribution of different categories got disturbed which will highly

affect the performance of the machine learning model. So to maintain the same proportion of the target variable

stratification is needed .This stratify parameter makes a split so that the proportion of values in the sample produced

will be the same as the proportion of values provided to the parameter stratify.X_train, X_test, y_train, y_test =

train_test_split(X, y, stratify=y, test_size=0.2,shuffle=True, random_state=5)

8. CONCLUSION

In conclusion, the Phishing Website Detection system represents a significant advancement in cybersecurity,

harnessing the power of cutting-edge technologies such as Artificial Intelligence (AI) and Machine Learning (ML).

This innovative platform not only addresses the pressing need to combat the escalating threat of phishing attacks but

also provides a robust solution for safeguarding users' sensitive information in the digital landscape. By integrating

sophisticated AI algorithms, the system excels in analysing complex web data and identifying subtle indicators of

phishing activities with remarkable accuracy. Through predictive modelling and pattern recognition, the Phishing

Website Detection system empowers users to anticipate and thwart malicious attempts in real-time, thereby mitigating

potential risks and preserving online security. The adaptability and continuous learning capabilities of the system

ensure its relevance and effectiveness in dynamically evolving cyber threats cape. As new phishing tactics emerge, the

system autonomously adapts its detection mechanisms, staying ahead of adversaries and providing users with proactive

protection. Moreover, rigorous testing methodologies, including unit testing, integration testing, and security testing,

validate the system's reliability, performance, and resilience against cyber threats. By prioritizing user experience

through intuitive user interfaces and seamless integration with existing software environments, the system ensures

accessibility and usability for both cybersecurity experts and end-users. The cross-disciplinary applicability of the

Phishing Website Detection system underscores its significance in diverse sectors, including finance, e-commerce,

healthcare, and government. Its ability to detect and prevent phishing attacks effectively serves as a critical line of

defence against financial fraud, data breaches, and identity theft, thereby safeguarding individuals and organizations

worldwide. As the system undergoes continuous refinement and enhancement, fueled by ongoing research and

feedback from cybersecurity professionals and end-users alike, it remains poised to redefine the landscape of online

security and shape the future of cybersecurity technologies. In essence, the Phishing Website Detection system stands

as a testament to the transformative potential of AI and ML in fortifying digital defenses and preserving trust in the

interconnected world. Through its implementation

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 2503-2515

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 2515

9. FUTURE SCOPE

Machine Learning Model Refinement: Continuously train and refine the machine learning model used for phishing

website detection to improve its accuracy and efficiency over time. Incorporate more sophisticated algorithms or

techniques such as deep learning to enhance detection capabilities.

Real-Time Detection: Implement real-time detection capabilities to promptly identify and block phishing websites as

they emerge. This could involve integrating the detection system with web browsers or network security solutions to

provide immediate protection to users.

Multi-Layered Detection Approach: Develop a multi- layered detection approach that combines various detection

methods such as heuristic analysis, URL analysis, content analysis, and behavioral analysis. This approach can

improve the robustness of the detection system and reduce false positives.

10. REFERENCES

[1] https://blog.keras.io/building-autoencoders-in-keras.html

[2] https://en.wikipedia.org/wiki/Autoencoder

[3] https://mc.ai/a-beginners-guide-to-build-stacked-autoencoder- and-tying-weights-with-it/

[4] https://machinelearningmastery.com/save-gradient-boosting- models-xgboost-python/

https://en.wikipedia.org/wiki/Autoencoder
https://mc.ai/a-beginners-guide-to-build-stacked-autoencoder-%20and-tying-weights-with-it/

