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ABSTRACT 

A "smart camera" comprises a compact integration of a video camera with a computer vision system. This discussion 

initiates by outlining the primary distinctions between smart cameras and conventional smart vision systems. It 

elaborates on the architecture of a smart camera, highlighting the utilization of an onboard microprocessor and PLDs to 

enable the incorporation of image processing algorithms within the camera itself. The text introduces a static 

thresholding algorithm as an example, showcasing its capability to detect non-uniformity in the inspection target. 

Furthermore, it presents an application scenario of a multi-camera inspection system, wherein up to twenty smart 

cameras can be interconnected to a single host computer. Concluding remarks include insights into the potential 

technological and application-based advancements in the realm of smart cameras. 

1. INTRODUCTION  

Recent advancements in technology are facilitating the emergence of a new breed of intelligent cameras, marking a 

significant advancement in sophistication. Unlike conventional digital cameras that merely capture images, smart 

cameras have the capability to capture detailed descriptions of scenes and conduct analysis based on the content they 

perceive. These devices hold potential for diverse applications, including but not limited to human and animal detection, 

surveillance, motion analysis, and facial recognition. 

The demand for real-time performance in video processing is relentless. Smart cameras harness the power of very large-

scale integration (VLSI) to deliver such analysis within a cost-effective, energy-efficient framework, equipped with 

ample memory capacity. Going beyond mere pixel processing and compression, these systems execute a broad spectrum 

of algorithms to derive meaningful insights from streaming video data. 

2. ALGORITHMS FOR DETECTION AND RECOGNITION 

Although various methods exist for real-time video analysis, our initial focus lies on human gesture recognition. This 

involves discerning actions such as walking, standing, or waving arms. Given the ongoing development in this area, our 

aim is to devise an embedded system capable of accommodating future algorithms while leveraging those tailored 

specifically for this purpose. 

Our algorithms encompass both low-level and high-level processing. At the low level, they identify individual body 

parts and classify their movements in simplistic terms. Conversely, the high-level component, tailored to specific 

applications, utilizes this data to recognize actions of each body part and the overall activity of the person, considering 

contextual parameters. 

The human detection and activity/gesture recognition algorithm comprises two primary components: Low level 

processing and high level processing. 
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A) Primary processing 

The system acquires images from the video input, which may be uncompressed or compressed (such as MPEG and 

motion JPEG), and employs four distinct algorithms to detect and identify human body parts. 

Region extraction: In the initial algorithm, the pixels of an image, as depicted , are converted into an M × N bitmap 

and background elements are removed. Subsequently, it identifies the skin area of the body part using a YUV color 

model with down sampled chrominance values 

 

Contour tracing: Following region extraction, as depicted in  the subsequent stage entails connecting the individual 

clusters of pixels to form contours that outline the regions   geometrically. This algorithm employs a 3 × 3 filter to track 

the edge of the component in any of eight different directions 

 

Elliptical fitting: In order to rectify distortions in image processing arising from various factors such as clothing, 

obstructing objects, or overlapping body parts, an algorithm is employed to fit ellipses to the pixel regions, as illustrated. 

This approach aims to simplify the attributes of body parts. By utilizing parametric surface approximations, the 

algorithm calculates geometric descriptors for segments including area, compactness (circularity), weak perspective 

invariants, and spatial relationships. 
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Matching graphs: Each region extracted and modeled with ellipses corresponds to a node within a graphical 

representation of the human body. A piecewise quadratic Bayesian classifier utilizes the parameters of the ellipses to 

compute feature vectors, comprising binary and unary attributes. These feature vectors are then matched with those of 

body parts or meaningful combinations of parts, which are computed offline. To streamline the process, the algorithm 

commences with the face detection, which is typically the most straightforward. 

Advanced processing: 

The high-level processing module, adaptable to various applications, juxtaposes the motion sequence of each body part 

defined as a spatiotemporal series of feature vectors across multiple frames with known posture and gesture patterns. It 

employs multiple hidden Markov models concurrently to assess the overall activity of the body. Discrete HMMs are 

utilized, generating eight directional code words to assess upward, downward, leftward, rightward, and circular 

movements of each body part. 

Human actions often entail intricate sequences of movements. Therefore, we amalgamate the motion pattern of each 

body part with the subsequent one to generate a new sequence. Through dynamic programming, we compute 

probabilities for both the original and amalgamated sequences to discern the person's actions. Intervals between gestures 

serve as cues for the commencement and culmination of discrete actions.  

A quadratic Mahalanobis distance classifier amalgamates HMM outputs with varying weights to create reference models 

for diverse gestures. For instance, a pointing gesture might signify a command to "advance to the next slide" in a smart 

meeting environment or "open the window" in a smart vehicle. 

Conversely, a smart security camera may interpret the gesture as suspicious or menacing.parts. High-level information 

obtained from one perspective activates recognition algorithms using the second cameras. 

Soft-tissue reconstruction: 

MatLab serves as a platform for developing our algorithms. While this technical computation and visualization 

environment operates significantly slower than embedded platform implementations, particularly crucial for real-time 

video processing, it enables us to transfer our MatLab implementation to C code running on a very long instruction word 

(VLIW) video processor. This facilitates architectural measurements on the application and necessary optimizations for 

designing a bespoke VLSI smart camera. 

Specifications 

During the development phase, we assess the algorithms based on accuracy and other conventional benchmarks. 

However, an embedded system must meet additional real-time requirements: 

Frame rate: The system must process a specified number of frames per second to effectively analyze motion and yield 

meaningful results. The attainable frame rate depends on the algorithms employed and the computational capability of 

the platform, with some systems achieving exceptionally high rates. 

Latency: The time taken to produce results for each frame is crucial, especially as smart cameras are likely to be 

integrated into closed-loop control systems. High latency can impede the timely initiation of events based on actions 

captured in the video feed. 

 

Transitioning to an embedded platform also necessitates efficient memory utilization. In anticipation of highly integrated 

smart cameras, minimizing memory usage in the system is imperative to conserve chip area and reduce power 

consumption. Excessive memory usage often indicates inefficient implementation.  
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3. COMPONENTS 

Our development strategy involves utilizing readily available components to process video in real-time from a standard 

source, debug algorithms and programs, and establish connections between multiple smart cameras in a networked 

system. The chosen video processor is the 100-MHz Philips TriMedia TM-1300, which boasts a 32-bit fixed- and 

floating-point processor with dedicated image coprocessor, a variable length decoder, an optimizing C/C++ compiler, 

integrated peripherals for VLIW concurrent real-time input/output, and a comprehensive set of application library 

functions, including support for MPEG, motion JPEG, and 2D text and graphics. 

 

Testbed Architecture 

Our testbed architecture, illustrated in Figure 3, incorporates two TriMedia boards linked to a host PC to facilitate 

programming support. Each PCI bus board is connected to a Hi8 camera providing NTSC composite video. Multiple 

boards can be integrated into a single computer for concurrent video operations. The utilization of a shared memory 

interface offers enhanced performance compared to networks typically utilized in VLSI cameras, enabling us to 

functionally implement and debug multiple-camera systems using actual video data.  

 

Experiments and Optimizations 

As data representation transitions to a more abstract form, the volume of input/output data decreases. However, 

predicting the change in required memory size becomes less straightforward due to complex relationships that can 

develop between abstract data. For instance, describing 100 ellipses using six single-precision, floating-point parameters 

necessitates only 2.4 Kbytes of memory, whereas storing information about two adjoining ellipses requires 10 Kbytes. 

Building on these initial experiments, we optimize our smart camera implementation by incorporating techniques to 

expedite video operations, such as substituting new algorithms better suited to real-time processing and employing 

TriMedia library routines in place of C-level code. 
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Algorithmic Changes 

Initially, we employed a method involving fitting super ellipses (generalized ellipses) to contour points, which proved 

to be the most time-consuming step. Rather than focusing on optimizing the existing code, we opted to switch to a 

different algorithm. By replacing the original approach developed from principal component analysis with moment-

based initialization, we streamlined the Levenberg-Marquardt fitting procedure, resulting in reduced execution time. 

Following the conversion of the original Matlab implementation to C, we conducted experiments to evaluate the 

effectiveness of the smart camera system and identify bottlenecks. The unoptimized code averaged 20.4 million cycles 

to process a single input frame, equivalent to a rate of 5 frames per second. Initially, we assessed the CPU times of each 

low-level processing step to pinpoint where the cycles were being consumed. Microsoft Visual C++ proved more 

suitable for this purpose than the TriMedia compiler, as it could track the running time of each function as well as its 

subfunctions' times. Figure 4a displays the distribution of processing times for the four body-part-detection algorithms, 

while Figure 4b depicts the memory characteristics of each low-level processing stage.  

 

Control-to-Data Transformation 

Expanding the processor's issue width can leverage the high degree of parallelism inherent in region extraction. 

Employing a processor with more functional units could consequently reduce processing time during this phase. 

However, contour following, which converts pixels into abstract forms like lines and ellipses, incurs even greater time 

consumption. Moreover, the algorithm operates serially, examining a small pixel window to sequentially trace the 

contour's boundary. At each step, it must determine the location of the contour's next pixel in a clockwise direction. 

While this method is accurate and intuitive, it offers limited instruction-level parallelism (ILP). To address this 

limitation, we evaluated all possible directions in parallel and consolidated the true/false results into a byte, serving as 

an index to access the boundary pixel in a lookup table. Additionally, we manipulated the control-flow structure of the 

algorithm to further enhance ILP. These optimizations doubled the speed of the contour-following stage. 

 

4. OPTIMIZATION RESULTS AND CONCLUSION 

The combination of these methods significantly enhances CPU performance for the application. Optimization elevates 

the program's frame rate from 5 to 31 frames per second, while latency decreases from about 340 to 40-60 milliseconds 

per frame. With the incorporation of HMMs and other high-level processing components, the program now operates at 

approximately 25 frames per second. Our board-level system represents a pivotal initial step in designing a highly 

integrated smart camera. Although the current system is directly applicable to certain applications, including security 

and medicine, a VLSI system will facilitate the development of high-volume embedded computing products. Given that 
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digital processors and memory rely on advanced small-feature fabrication, while sensors necessitate relatively large 

pixels for efficient light collection, designing the system as two chips housed within a multichip module is pragmatic.  

Separating the sensor from the processor also aligns with architectural principles, considering the well-understood and 

straightforward interface between the sensor and computation engine. Leveraging existing sensor technology offers 

significant advantages over pixel-plane processors until they become more prevalent. Nevertheless, integrating special-

purpose SIMD processors into the multiprocessor can prove beneficial for boundary analysis and other operations, while 

also conserving power, a critical consideration given the expense and effort involved in deploying multiple cameras, 

particularly in outdoor settings.  
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