

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 698-707

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 698

TOXIC COMMENTS CLASSIFICATION USING NLP

Dr. M. V. Vijaya Saradhi1, Konda Yuva Kumar2, Banoth Bhaskar3, Udayagiri Sai Charan4,

Boggula Kharthik5
1Professor And Head, CSE and Iot Dept Ace Engineering College Hyderabad, India.

2,3,4,5CSE Ace Engineering College Hyderabad, India.

DOI: https://www.doi.org/10.58257/IJPREMS33180

ABSTRACT

"Building a multi-headed model that's capable of detecting different types of toxicity like threats,obscenity, insult and

identity-based hate. Discussing things you care about can be difficult. The threat of abuse and harassment online

means that many people stop expressing themselves and give up on

seeking different opinions. Platforms struggle to efficiently facilitate conversations, leading many communities to

limit or completely shut down user comments. So far we have a range of publicly available models served through the

perspective APIs, including toxicity. But the current models still make errors, and they don't allow users to select

which type of toxicity they're interested in finding Online discussions often face challenges due to toxic comments,

like threats, obscenity, insults, and identity-based hate. Existing models and APIs can help identify toxic content but

often lack precision and user customization.

They might make mistakes, discouraging people from participating in discussions. To improve online conversations,

we need smarter models that can accurately spot and categorize different types of toxicity. These models should allow

users to select what kind of harmful content they want to filter, making online interactions safer and more open. This

way, we can create a more welcoming digital space where people can freely express their thoughts and ideas.”

1. INTRODUCTION

Toxic Comments Classification Using Natural Language Processing (NLP) is a critical application within the field of

machine learning and artificial intelligence. In the digital age, online platforms often face challenges related to toxic or

abusive comments, which can have detrimental effects on user experiences, online communities, and brand reputation.

NLP, as a subfield of AI, enables the development of models and algorithms capable of automatically identifying and

categorizing toxic comments in textual data. The goal of Toxic Comments Classification is to create robust and

accurate models that can distinguish between different types of harmful language, such as hate speech, offensive

language, or threats, within user-generated content. This process involves training machine learning models on labeled

datasets, where comments are annotated based on their toxicity levels. The models learn patterns and features from

these examples, allowing them to generalize and classify unseen comments effectively.

The significance of this application extends beyond content moderation. Platforms that host usergenerated content,

social media, news websites, and online forums, for example, can use Toxic Comments Classification to maintain a

healthier online environment, fostering positive interactions and reducing the risk of harm.

Key components of a Toxic Comments Classification system using NLP include data preprocessing, feature extraction,

model training, and evaluation. Various NLP techniques, such as tokenization, stemming, and sentiment analysis, are

employed to enhance the model's understanding of context and language nuances. As the field of NLP continues to

advance, leveraging deep learning techniques like recurrent neural networks (RNNs) and transformers has become

common in developing more sophisticated and accurate toxic comment classifiers.

2. OBJECTIVES

In the context of toxic comments classification using NLP, the primary objectives include developing an accurate NLP

model to identify and categorize toxic comments and enhancing user experience through customization. The project

aims to improve model accuracy, ensure scalability, provide multilingual support, and address ethical considerations

to create safer online spaces.

the objectives revolve around creating an accurate, customizable, and adaptable NLP model for toxic comments

classification, with a focus on user empowerment, ethical considerations, and community engagement to foster a more

inclusive and respectful online environment. Domain: Machine Learning and Artificial Intelligence , Text Processing,

Natural Language Processing(NLP) Technologies required: Text Preprocessing, Tensorflow, NumPy, NLTK, pyTorch

google cloud.

mailto:yuvakumar010@gmail.com

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 698-707

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 699

3. PROBLEM STATEMENT

In the age of online communication, the rise of toxic comments, including threats, obscenity, insults, and identity-

based hate, has become a significant challenge, hindering constructive and respectful discussions. The objective is to

develop a natural language processing (NLP) solution that can accurately and efficiently identify and categorize

various forms of toxicity in user-generated content. This solution should empower users to customize their content

filtering preferences to enhance their online experience, promote more meaningful conversations, and create a safer

and more inclusive digital environment.

In the realm of online communication, the challenge is identifying and classifying toxic comments, including threats,

obscenities, insults, and identity-based hate. Our goal is to develop a precise NLP solution that allows users to

customize their content filtering preferences, creating a safer, more inclusive digital environment. This project aims to

improve online discourse quality, reduce false positives and negatives, and mitigate the harmful impact of abuse and

harassment.

4. PROPOSED SYSYTEM

The proposed system for toxic comments classification using NLP integrates advanced features to overcome existing

challenges. It emphasizes context-aware models to comprehend nuances and cultural variations, ensuring accurate

classification. Continuous learning mechanisms are implemented to adapt to evolving language trends, incorporating

new slang and expressions. Bias mitigation techniques, including debiasing algorithms, address and rectify biases

present in training data for fair and unbiased classifications. Dynamic datasets, spanning various linguistic styles and

cultural backgrounds, enhance the model's ability to generalize effectively. The system employs a human-in-the-loop

validation approach, allowing users to provide feedback, ensuring ethical considerations, and refining model outputs.

These strategies collectively aim to create a robust and adaptable toxic comments classification system that aligns with

evolving communication dynamics while prioritizing accuracy and fairness.

5. HARDWARE AND SOFTWARE REQUIREMENTS

HARDWARE REQUIREMENTS:

• Processor – Pentium IV

• RAM – 4 GB (min)

• Hard Disk – 20 GB

• Key Board – Standard Windows Keyboard

• Mouse – Two or Three Button Mouse

• Monitor – SVGA

SOFTWARE REQUIREMENTS:

• Operating system – Windows 7, 8, 10, 11, mac os

• Coding Language – Python

• Back-End – Python

• Designing – HTML , CSS , Java Script

6. TECHNOLOGY DESCRIPTION PYTHON

Python is a general-purpose interpreted, interactive, object-oriented, and high-level programming language. An

interpreted language, Python has a design philosophy that emphasizes code readability (notably using whitespace

indentation to delimit code blocks rather than curly brackets or keywords), and a syntax that allows programmers to

express concepts in fewer lines of code than might be used in languages such as C++or Java. It provides constructs

that enable clear programming on both small and large scales. Python interpreters are available for many operating

systems. CPython, the reference implementation of Python, is open source software and has a community-based

development model, as do nearly all of its variant implementations. CPython is managed by the non-profit Python

Software Foundation. Python features a dynamic type system and automatic memory management. It supports

multiple programming paradigms, including object-oriented, imperative, functional and procedural, and has a large

and comprehensive standard library

7. PACKAGES USED

Flask is a lightweight web framework for Python, designed for simplicity and flexibility in web application

development. Developed by Armin Ronacher, it utilizes the Werkzeug WSGI toolkit and Jinja2 template engine. Key

features include a minimalist structure, decorator-based routing, a built-in development server, and integration with

Jinja2 for templating. Flask's modular design allows developers to select and integrate components as needed, and its

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 698-707

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 700

rich ecosystem of extensions facilitates the addition of features like authentication and database integration.

Installation is straightforward using pip, and a typical "Hello World" example showcases its ease of use. While Flask

is flexible in project structure, a common convention involves organizing applications with a package structure.

Deploying Flask applications can be done on various platforms, from traditional web servers to cloud services.

Overall, Flask's simplicity, flexibility, and extensive documentation make it a popular choice for Python web

development.

ALGORITHM

Word NetL emmatizer:

The Word NetL emmatizer is a tool provided by NLTK (Natural Language Toolkit) for lemmatization in natural

language processing. Lemmatization involves reducing words to their base or root form, known as the lemma. This

process helps in standardizing and normalizing words, making it useful for tasks like text analysis, information

retrieval, and machine learning.

TfidfVectorizer:

The TfidfVectorizer is a feature extraction method commonly used in natural language processing and information

retrieval. It transforms a collection of raw text documents into a matrix of TF-IDF features. TF-IDF stands for Term

Frequency-Inverse Document Frequency, and it reflects the importance of a term in a document relative to its

frequency across multiple documents. TfidfVectorizer is widely employed in text-based machine learning tasks, such

as document classification and clustering, where it helps in capturing the significance of words within a corpus.

MultinomialNB (Multinomial Naive Bayes):

MultinomialNB is a classification algorithm based on the Naive Bayes theorem, specifically designed for datasets with

discrete features. It is commonly used in text classification tasks, including spam filtering, sentiment analysis, and

document categorization.

The "naive" assumption is that features are conditionally independent, simplifying the computation of probabilities.

MultinomialNB is particularly effective with features representing word counts or term frequencies, making it well-

suited for natural language processing applications. It has proven to be a robust and efficient choice for text

classification problems.

Coding:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

data = pd.read_csv("FinalBalancedDataset.csv")

data.info()

data.head(5)

data = data.drop("Unnamed: 0", axis=1)

data.head(5)

data['Toxicity'].value_counts()

import nltk

nltk.download('punkt')

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 698-707

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 701

nltk.download('omw-1.4')

nltk.download('wordnet')

nltk.download('stopwords')

nltk.download('averaged_perceptron_tagger')

from nltk import WordNetLemmatizer

from nltk import pos_tag, word_tokenize

from nltk.corpus import stopwords as nltk_stopwords

from nltk.corpus import wordnet

Text pre-processing

wordnet_lemmatizer = WordNetLemmatizer()

import re

def prepare_text(text):

def get_wordnet_pos(treebank_tag):

if treebank_tag.startswith('J'):

return wordnet.ADJ

elif treebank_tag.startswith('V'):

return wordnet.VERB

elif treebank_tag.startswith('N'):

return wordnet.NOUN

elif treebank_tag.startswith('R'):

return wordnet.ADV

else:

return wordnet.NOUN

text = re.sub(r'[^a-zA-Z\']', ' ', text)

text = text.split()

text = ' '.join(text)

text = word_tokenize(text)

text = pos_tag(text)

lemma = []

for i in text: lemma.append(wordnet_lemmatizer.lemmatize(i[0], pos = get_wordnet_pos(i[1])))

lemma = ' '.join(lemma)

return lemma

data['clean_tweets'] = data['tweet'].apply(lambda x: prepare_text(x))

data.head(5)

Tfidf for features

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import roc_auc_score

from sklearn.metrics import roc_curve

corpus = data['clean_tweets'].values.astype('U')

stopwords = list(set(nltk_stopwords.words('english')))

count_tf_idf = TfidfVectorizer(stop_words = stopwords)

tf_idf = count_tf_idf.fit_transform(corpus)

import pickle

pickle.dump(count_tf_idf, open("tf_idf.pkt", "wb"))

tf_idf_train, tf_idf_test, target_train, target_test = train_test_split(

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 698-707

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 702

tf_idf, data['Toxicity'], test_size = 0.8, random_state= 42, shuffle=True

)

Create a Binary Classification Model

model_bayes = MultinomialNB()

model_bayes = model_bayes.fit(tf_idf_train, target_train)

y_pred_proba = model_bayes.predict_proba(tf_idf_test)[::, 1]

y_pred_proba

fpr, tpr, _ = roc_curve(target_test, y_pred_proba)

final_roc_auc = roc_auc_score(target_test, y_pred_proba)

final_roc_auc

test_text = "I am gone kill you"

test_tfidf = count_tf_idf.transform([test_text])

display(model_bayes.predict_proba(test_tfidf))

display(model_bayes.predict(test_tfidf))

Save the model

pickle.dump(model_bayes, open("toxicity_model.pkt", "wb"))

model=pickle.load(open("toxicity_model.pkt","rb"))

model

output=model.predict(count_tf_idf.transform(["good"]))

"Toxic" if output[0]==1 else "Non-Toxic"

import numpy as np

import pandas as pd

import streamlit as st

from googleapiclient.discovery import build

import pickle

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.naive_bayes import MultinomialNB

import re

import os

youtube comments ertraction process

Replace 'YOUR_API_KEY' with the API key you obtained

API_KEY = 'AIzaSyADZ3xWnP1_RBK68r7ADwKSAEY9PgxEY5E'

youtube = build('youtube', 'v3', developerKey=API_KEY)

comment=[]

authorname=[]

toxic=[]

def extract_video_id(video_url):

Regular expression to match the YouTube video ID

pattern = re.compile(r'(?:youtube\.com\/(?:[^\/\n\s]+\/\S+\/|(?:v|e(?:mbed)?)\/|\S*?[?&]v=)|youtu\.be\/)([a-zA-

Z0-9_-]{11})')

Search for the pattern in the URL

match = pattern.search(video_url)

If a match is found, return the video ID

if match:

return match.group(1)

else:

return "No id found! sorry"

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 698-707

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 703

def link(youtube_link):

video_id=extract_video_id(youtube_link)

if video_id:

request = youtube.commentThreads().list(

part='snippet',

videoId=video_id,

textFormat='plainText',

maxResults=10

)

print(request)

while request:

response = request.execute()

print(response)

for item in response['items']:

comment.append(item['snippet']['topLevelComment']['snippet']['textDisplay'])

authorname.append(item['snippet']['topLevelComment']['snippet']['authorDisplayName'])

print([item])

print()

if len(comment)>=100:

break

request = youtube.commentThreads().list_next(request, response)

print(request)

tfidf=pickle.load(open("tf_idf.pkt","rb"))

tfidf_path = r"C:\Desktop\Major project\Flask-Web-App-Tutorial-main\Flask-Web-App-Tutorial-

main\social_media\tf_idf.pkt"

tfidf = pickle.load(open(tfidf_path, "rb"))

toxicity_model_path=r"C:\Desktop\Major project\Flask-Web-App-Tutorial-main\Flask-Web-App-Tutorial-

main\social_media\toxicity_model.pkt"

nb_model=pickle.load(open(toxicity_model_path,"rb"))

n=len(comment)

for i in range(n):

text_input=tfidf.transform([comment[i]]).toarray()

prediction=nb_model.predict(text_input)

if(prediction==1):

toxic.append("Toxic")

else:

toxic.append("Non-Toxic")

Table={'Authors ' : authorname,

'comments ' : comment,

'Toxicity': toxic}

table={}

j=0

for i in authorname:

table[i]=[comment[j],toxic[j]]

j+=1

return table

print(link('https://www.youtube.com/watch?v=dam0GPOAvVI')['Toxicity'])

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 698-707

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 704

print(link('https://www.youtube.com/watch?v=3mZHj1tv8iY'))

from flask import Flask

from flask_sqlalchemy import SQLAlchemy

from os import path

from flask_login import LoginManager

db = SQLAlchemy()

DB_NAME = "database.db"

def create_app():

app = Flask(_name_)

app.config['SECRET_KEY'] = 'hjshjhdjah kjshkjdhjs'

app.config['SQLALCHEMY_DATABASE_URI'] = f'sqlite:///{DB_NAME}'

db.init_app(app)

from .views import views

from .auth import auth

app.register_blueprint(views, url_prefix='/')

app.register_blueprint(auth, url_prefix='/')

from .models import User, Note

with app.app_context():

db.create_all()

login_manager = LoginManager()

login_manager.login_view = 'auth.login'

login_manager.init_app(app)

@login_manager.user_loader

def load_user(id):

return User.query.get(int(id))

return app

def create_database(app):

if not path.exists('website/' + DB_NAME):

db.create_all(app=app)

print('Created Database!')

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 698-707

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 705

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 698-707

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 706

8. TESTING

The testing of the "Toxic Comments Classification Using NLP" system involves various methodologies to ensure its

reliability, accuracy, and effectiveness. Here are key testing methodologies employed during different stages of

development: TYPES OF TESTS Unit Testing: Test individual modules and components in isolation to ensure they

function as intended. Verify that each unit of code, such as algorithms, preprocessing functions, and user interface

components, produces the expected output. Integration Testing: Evaluate the interaction between different modules

and components to ensure seamless integration. Verify that the system components work together as a cohesive unit,

detecting and resolving any issues related to data flow and communication. Functional Testing: Validate that the

system meets the specified functional requirements. Test core functionalities such as data analysis, predictive

modeling, user interface interactions, and cross-disciplinary adaptability. User Interface (UI) Testing: Assess the

usability and user-friendliness of the interface. Ensure that users can easily navigate through the system, input data,

and interpret results. Performance Testing: Evaluate the system's responsiveness, scalability, and resource usage under

different conditions. Test the application's ability to handle large datasets and complex computations without

compromising performance.

Regression Testing: Verify that new updates or modifications do not adversely impact existing functionalities. Re-run

previously conducted tests to ensure that any changes have not introduced new errors or broken existing features.

Security Testing: Assess the system's resistance to unauthorized access, data breaches, and other security

vulnerabilities. Implement measures to safeguard sensitive data processed by the application. Cross-Browser and

Cross-Platform Testing: Ensure compatibility with various web browsers and operating systems. Test the system's

functionality on different platforms to guarantee a consistent user experience. Adaptive Learning and Continuous

Improvement Testing: Assess the system's ability to adapt and improve over time. Validate that the adaptive learning

mechanisms are effectively enhancing the system's predictive capabilities based on new data and scenarios. User

Acceptance Testing (UAT): Involve end-users, researchers, and scientists in the testing process to gather feedback on

the system's usability and effectiveness. Ensure that the system aligns with user expectations and fulfills their

requirements

9. CONCLUSION

This study analyzes the performance of various machine learning models to perform toxic comments classification and

proposes an ensemble approached called Lstm-cnn. The influence of an imbalanced dataset and balanced datasetusing

random under-sampling and over-sampling on the performance of the models is analyzed through extensive

experiments. Two feature extraction approaches including TF-IDF a are used to get the feature vector for models’

training. Results indicate that models perform poorly on the imbalanced dataset while the balanced dataset tends to

increase the classification accuracy. Besides the machine learning classifiers like SVM, RF, GBM, and LR, the

proposed RVVC and RNN deep learning models perform well with the balanced dataset. The performance with an

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 04, April 2024, pp: 698-707

e-ISSN :

2583-1062

Impact

Factor:

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 707

over-sampled dataset is better than the under-sampled dataset as the feature set is large when the data is over-sampled

which elevates the performance of the models. Results suggest that balancing the data reduces the chances of models

over-fitting which happens if the imbalanced dataset is used for training. Moreover, TF-IDF shows better

classification accuracy for toxic comments The proposed ensemble approach Lstm-cnn demonstrates its efficiency for

toxic and non-toxic comments classification. The performance of Lstm-cnn is superior both with the imbalanced and

balanced dataset, yet, it achieves the highest accuracy of 0.97 when used with TF-IDF features The performance

comparisonwith state-of-the-art approaches also indicates that Lstm-cnn shows better performance and proves good on

small and large feature vectors. Despite the better performance of the proposed ensemble approach, its computational

complexity is higher than the individual models which is an important topic for our future research. Similarly, dataset

imbalance can overstate the results because data balancing using or random under-sampling approach may have a

certain influence on the reported accuracy. Moreover, we intend to perform further experiments on multi-domain

datasets and run experiments on more datasets for toxic comment classification.

10. REFERENCES

[1] H. M. Saleem, K. P. Dillon, S. Benesch and D. Ruths, "A Web of Hate: Tackling Hateful Speech in Online

Social Spaces", 2017, [online] Available: http://arxiv.org/abs/1709.10159.

[2] M. Duggan, "Online harassment 2017", Pew Res., pp. 1-85, 2017.

[3] M. A. Walker, P. Anand, J. E. F. Tree, R. Abbott and J. King, "A corpus for research on deliberation and

debate", Proc. 8th Int . Conf. Lang. Resour. Eval. Lr. 2012, pp. 812-817, 2012.

[4] J. Cheng, C. Danescu-Niculescu-Mizil and J. Leskovec, "Antisocial behavior in online discussion

communities", Proc. 9th Int. Conf. Web Soc. Media ICWSM 2015, pp. 61-70, 2015.

[5] B. Mathew et al., "Thou shalt not hate: Countering online hate speech", Proc. 13th Int. Conf. Web Soc. Media

ICWSM 2019, no. August, pp. 369-380, 2019.

[6] C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad and Y. Chang, "Abusive language detection in online user

content", 25th Int. World Wide Web Conf. WWW 2016, pp. 145-153, 2016.

[7] E. K. Ikonomakis, S. Kotsiantis and V. Tampakas, "Text Classification Using Machine Learning Techniques",

August 2005.

[8] M. R. Murty, J. V. Murthy and P. Reddy, "Text Document Classification basedon Least Square Support Vector

Machines with Singular Value Decomposition", Int. J. Comput. Appl, vol. 27, no. 7, pp. 21-26, 2011.

[9] E. Wulczyn, N. Thain and L. Dixon, "Ex machina: Personal attacks seen at scale", 26th Int. World Wide Web

Conf. WWW 2017, pp. 1391-1399, 2017.

[10] H. Hosseini, S. Kannan, B. Zhang and R. Poovendran, "Deceiving Google’s Perspective API Built for

Detecting Toxic Comments", 2017, [online] Available: http://arxiv.org/abs/1702.08138.

