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ABSTRACT 

"Building a multi-headed model that's capable of detecting different types of toxicity like threats,obscenity, insult and 

identity-based hate. Discussing things you care about can be difficult. The threat of abuse and harassment online 

means that many people stop expressing themselves and give up on 

seeking different opinions. Platforms struggle to efficiently facilitate conversations, leading many communities to 

limit or completely shut down user comments. So far we have a range of publicly available models served through the 

perspective APIs, including toxicity. But the current models still make errors, and they don't allow users to select 

which type of toxicity they're interested in finding Online discussions often face challenges due to toxic comments, 

like threats, obscenity, insults, and identity-based hate. Existing models and APIs can help identify toxic content but 

often lack precision and user customization.  

They might make mistakes, discouraging people from participating in discussions. To improve online conversations, 

we need smarter models that can accurately spot and categorize different types of toxicity. These models should allow 

users to select what kind of harmful content they want to filter, making online interactions safer and more open. This 

way, we can create a more welcoming digital space where people can freely express their thoughts and ideas.” 

1. INTRODUCTION 

Toxic Comments Classification Using Natural Language Processing (NLP) is a critical application within the field of 

machine learning and artificial intelligence. In the digital age, online platforms often face challenges related to toxic or 

abusive comments, which can have detrimental effects on user experiences, online communities, and brand reputation. 

NLP, as a subfield of AI, enables the development of models and algorithms capable of automatically identifying and 

categorizing toxic comments in textual data. The goal of Toxic Comments Classification is to create robust and 

accurate models that can distinguish between different types of harmful language, such as hate speech, offensive 

language, or threats, within user-generated content. This process involves training machine learning models on labeled 

datasets, where comments are annotated based on their toxicity levels. The models learn patterns and features from 

these examples, allowing them to generalize and classify unseen comments effectively.  

The significance of this application extends beyond content moderation. Platforms that host usergenerated content, 

social media, news websites, and online forums, for example, can use Toxic Comments Classification to maintain a 

healthier online environment, fostering positive interactions and reducing the risk of harm.  

Key components of a Toxic Comments Classification system using NLP include data preprocessing, feature extraction, 

model training, and evaluation. Various NLP techniques, such as tokenization, stemming, and sentiment analysis, are 

employed to enhance the model's understanding of context and language nuances. As the field of NLP continues to 

advance, leveraging deep learning techniques like recurrent neural networks (RNNs) and transformers has become 

common in developing more sophisticated and accurate toxic comment classifiers.                      

2. OBJECTIVES  

In the context of toxic comments classification using NLP, the primary objectives include developing an accurate NLP 

model to identify and categorize toxic comments and enhancing user experience through customization. The project 

aims to improve model accuracy, ensure scalability, provide multilingual support, and address ethical considerations 

to create safer online spaces. 

the objectives revolve around creating an accurate, customizable, and adaptable NLP model for toxic comments 

classification, with a focus on user empowerment, ethical considerations, and community engagement to foster a more 

inclusive and respectful online environment. Domain: Machine Learning and Artificial Intelligence , Text Processing, 

Natural Language Processing(NLP) Technologies required: Text Preprocessing, Tensorflow, NumPy, NLTK, pyTorch 

google cloud.  
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3. PROBLEM STATEMENT 

In the age of online communication, the rise of toxic comments, including threats, obscenity, insults,  and identity-

based hate, has become a significant challenge, hindering constructive and respectful discussions. The objective is to 

develop a natural language processing (NLP) solution that can accurately and efficiently identify and categorize 

various forms of toxicity in user-generated content. This solution should empower users to customize their content 

filtering preferences to enhance their online experience, promote more meaningful conversations, and create a safer 

and more inclusive digital environment.  

In the realm of online communication, the challenge is identifying and classifying toxic comments, including threats, 

obscenities, insults, and identity-based hate. Our goal is to develop a precise NLP solution that allows users to 

customize their content filtering preferences, creating a safer, more inclusive digital environment. This project aims to 

improve online discourse quality, reduce false positives and negatives, and mitigate the harmful impact of abuse and 

harassment.  

4. PROPOSED SYSYTEM 

The proposed system for toxic comments classification using NLP integrates advanced features to overcome existing 

challenges. It emphasizes context-aware models to comprehend nuances and  cultural variations, ensuring accurate 

classification. Continuous learning mechanisms are implemented to adapt to evolving language trends, incorporating 

new slang and expressions. Bias mitigation techniques, including debiasing algorithms, address and rectify biases 

present in training data for fair and unbiased classifications. Dynamic datasets, spanning various linguistic styles and 

cultural backgrounds, enhance the model's ability to generalize effectively. The system employs a human-in-the-loop 

validation approach, allowing users to provide feedback, ensuring ethical considerations, and refining model outputs. 

These strategies collectively aim to create a robust and adaptable toxic comments classification system that aligns with 

evolving communication dynamics while prioritizing accuracy and fairness.  

5. HARDWARE AND SOFTWARE REQUIREMENTS 

HARDWARE REQUIREMENTS: 

• Processor – Pentium IV 

• RAM – 4 GB (min)  

• Hard Disk – 20 GB 

• Key Board – Standard Windows Keyboard 

• Mouse – Two or Three Button Mouse 

• Monitor – SVGA 

SOFTWARE REQUIREMENTS: 

• Operating system – Windows 7, 8, 10, 11, mac os 

• Coding Language – Python 

• Back-End – Python 

• Designing – HTML , CSS , Java Script 

6. TECHNOLOGY DESCRIPTION PYTHON 

Python is a general-purpose interpreted, interactive, object-oriented, and high-level programming language. An 

interpreted language, Python has a design philosophy that emphasizes code readability (notably using whitespace 

indentation to delimit code blocks rather than curly brackets or keywords), and a syntax that allows programmers to 

express concepts in fewer lines of code than might be used in languages such as C++or Java. It provides constructs 

that enable clear programming on both small and large scales. Python interpreters are available for many operating 

systems. CPython, the reference implementation of Python, is open source software and has a community-based 

development model, as do nearly all of its variant implementations. CPython is managed by the non-profit Python 

Software Foundation. Python features a dynamic type system and automatic memory management. It supports 

multiple programming paradigms, including object-oriented, imperative, functional and procedural, and has a large 

and comprehensive standard library  

7. PACKAGES USED 

Flask is a lightweight web framework for Python, designed for simplicity and flexibility in web application 

development. Developed by Armin Ronacher, it utilizes the Werkzeug WSGI toolkit and Jinja2 template engine. Key 

features include a minimalist structure, decorator-based routing, a built-in development server, and integration with 

Jinja2 for templating. Flask's modular design allows developers to select and integrate components as needed, and its 
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rich ecosystem of extensions facilitates the addition of features like authentication and database integration. 

Installation is straightforward using pip, and a typical "Hello World" example showcases its ease of use. While Flask 

is flexible in project structure, a common convention involves organizing applications with a package structure. 

Deploying Flask applications can be done on various platforms, from traditional web servers to cloud services. 

Overall, Flask's simplicity, flexibility, and extensive documentation make it a popular choice for Python web 

development. 

 

ALGORITHM 

Word NetL emmatizer: 

The Word NetL emmatizer is a tool provided by NLTK (Natural Language Toolkit) for lemmatization in natural 

language processing. Lemmatization involves reducing words to their base or root form, known as the lemma. This 

process helps in standardizing and normalizing words, making it useful for tasks like text analysis, information 

retrieval, and machine learning. 

TfidfVectorizer: 

The TfidfVectorizer is a feature extraction method commonly used in natural language processing and information 

retrieval. It transforms a collection of raw text documents into a matrix of TF-IDF features. TF-IDF stands for Term 

Frequency-Inverse Document Frequency, and it reflects the importance of a term in a document relative to its 

frequency across multiple documents. TfidfVectorizer is widely employed in text-based machine learning tasks, such 

as document classification and clustering, where it helps in capturing the significance of words within a corpus. 

MultinomialNB (Multinomial Naive Bayes): 

MultinomialNB is a classification algorithm based on the Naive Bayes theorem, specifically designed for datasets with 

discrete features. It is commonly used in text classification tasks, including spam filtering, sentiment analysis, and 

document categorization.  

The "naive" assumption is that features are conditionally independent, simplifying the computation of probabilities. 

MultinomialNB is particularly effective with features representing word counts or term frequencies, making it well-

suited for natural language processing applications. It has proven to be a robust and efficient choice for text 

classification problems. 

Coding: 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt  

%matplotlib inline 

data = pd.read_csv("FinalBalancedDataset.csv") 

data.info() 

data.head(5) 

data = data.drop("Unnamed: 0", axis=1) 

data.head(5) 

data['Toxicity'].value_counts() 

import nltk 

nltk.download('punkt') 
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nltk.download('omw-1.4') 

nltk.download('wordnet') 

nltk.download('stopwords') 

nltk.download('averaged_perceptron_tagger') 

from nltk import WordNetLemmatizer 

from nltk import pos_tag, word_tokenize 

from nltk.corpus import stopwords as nltk_stopwords 

from nltk.corpus import wordnet 

## Text pre-processing 

wordnet_lemmatizer = WordNetLemmatizer() 

import re 

def prepare_text(text): 

def get_wordnet_pos(treebank_tag): 

if treebank_tag.startswith('J'): 

return wordnet.ADJ 

elif treebank_tag.startswith('V'): 

return wordnet.VERB 

elif treebank_tag.startswith('N'): 

return wordnet.NOUN 

elif treebank_tag.startswith('R'): 

return wordnet.ADV 

else: 

return wordnet.NOUN 

text = re.sub(r'[^a-zA-Z\']', ' ', text) 

text = text.split() 

text = ' '.join(text) 

text = word_tokenize(text) 

text = pos_tag(text) 

lemma = [] 

for i in text: lemma.append(wordnet_lemmatizer.lemmatize(i[0], pos = get_wordnet_pos(i[1]))) 

lemma = ' '.join(lemma) 

return lemma 

data['clean_tweets'] = data['tweet'].apply(lambda x: prepare_text(x)) 

data.head(5) 

## Tfidf for features 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.model_selection import train_test_split 

from sklearn.naive_bayes import MultinomialNB 

from sklearn.metrics import roc_auc_score 

from sklearn.metrics import roc_curve 

corpus = data['clean_tweets'].values.astype('U') 

stopwords = list(set(nltk_stopwords.words('english'))) 

count_tf_idf = TfidfVectorizer(stop_words = stopwords) 

tf_idf = count_tf_idf.fit_transform(corpus) 

import pickle 

pickle.dump(count_tf_idf, open("tf_idf.pkt", "wb")) 

tf_idf_train, tf_idf_test, target_train, target_test = train_test_split( 
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tf_idf, data['Toxicity'], test_size = 0.8, random_state= 42, shuffle=True 

) 

## Create a Binary Classification Model 

model_bayes = MultinomialNB() 

model_bayes = model_bayes.fit(tf_idf_train, target_train) 

y_pred_proba = model_bayes.predict_proba(tf_idf_test)[::, 1] 

y_pred_proba 

fpr, tpr, _ = roc_curve(target_test, y_pred_proba) 

final_roc_auc = roc_auc_score(target_test, y_pred_proba) 

final_roc_auc 

test_text = "I am gone kill you" 

test_tfidf = count_tf_idf.transform([test_text]) 

display(model_bayes.predict_proba(test_tfidf)) 

display(model_bayes.predict(test_tfidf)) 

## Save the model 

pickle.dump(model_bayes, open("toxicity_model.pkt", "wb")) 

model=pickle.load(open("toxicity_model.pkt","rb")) 

model 

output=model.predict(count_tf_idf.transform(["good"])) 

"Toxic" if output[0]==1 else "Non-Toxic" 

import numpy as np 

import pandas as pd 

# import streamlit as st 

from googleapiclient.discovery import build 

import pickle 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.naive_bayes import MultinomialNB 

import re 

import os 

# youtube comments ertraction process 

# Replace 'YOUR_API_KEY' with the API key you obtained 

API_KEY = 'AIzaSyADZ3xWnP1_RBK68r7ADwKSAEY9PgxEY5E' 

youtube = build('youtube', 'v3', developerKey=API_KEY) 

comment=[] 

authorname=[] 

toxic=[] 

def extract_video_id(video_url): 

# Regular expression to match the YouTube video ID 

pattern = re.compile(r'(?:youtube\.com\/(?:[^\/\n\s]+\/\S+\/|(?:v|e(?:mbed)?)\/|\S*?[?&]v=)|youtu\.be\/)([a-zA-

Z0-9_-]{11})') 

# Search for the pattern in the URL 

match = pattern.search(video_url) 

# If a match is found, return the video ID 

if match: 

return match.group(1) 

else: 

return "No id found! sorry" 
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def link(youtube_link): 

video_id=extract_video_id(youtube_link) 

if video_id: 

request = youtube.commentThreads().list( 

part='snippet', 

videoId=video_id, 

textFormat='plainText', 

maxResults=10 

) 

# print(request) 

while request: 

response = request.execute() 

# print(response) 

for item in response['items']: 

comment.append(item['snippet']['topLevelComment']['snippet']['textDisplay']) 

authorname.append(item['snippet']['topLevelComment']['snippet']['authorDisplayName']) 

# print([item]) 

# print() 

if len(comment)>=100: 

break 

request = youtube.commentThreads().list_next(request, response) 

print(request) 

# tfidf=pickle.load(open("tf_idf.pkt","rb")) 

tfidf_path = r"C:\Desktop\Major project\Flask-Web-App-Tutorial-main\Flask-Web-App-Tutorial-

main\social_media\tf_idf.pkt" 

tfidf = pickle.load(open(tfidf_path, "rb")) 

toxicity_model_path=r"C:\Desktop\Major project\Flask-Web-App-Tutorial-main\Flask-Web-App-Tutorial-

main\social_media\toxicity_model.pkt" 

nb_model=pickle.load(open(toxicity_model_path,"rb")) 

n=len(comment) 

for i in range(n): 

text_input=tfidf.transform([comment[i]]).toarray() 

prediction=nb_model.predict(text_input) 

if(prediction==1): 

toxic.append("Toxic") 

else: 

toxic.append("Non-Toxic") 

# Table={'Authors ' : authorname, 

# 'comments ' : comment, 

# 'Toxicity': toxic} 

table={} 

j=0 

for i in authorname: 

table[i]=[comment[j],toxic[j]] 

j+=1 

return table 

# print(link('https://www.youtube.com/watch?v=dam0GPOAvVI')['Toxicity']) 
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# print(link('https://www.youtube.com/watch?v=3mZHj1tv8iY')) 

from flask import Flask 

from flask_sqlalchemy import SQLAlchemy 

from os import path 

from flask_login import LoginManager 

db = SQLAlchemy() 

DB_NAME = "database.db" 

def create_app(): 

app = Flask(_name_) 

app.config['SECRET_KEY'] = 'hjshjhdjah kjshkjdhjs' 

app.config['SQLALCHEMY_DATABASE_URI'] = f'sqlite:///{DB_NAME}' 

db.init_app(app) 

from .views import views 

from .auth import auth 

app.register_blueprint(views, url_prefix='/') 

app.register_blueprint(auth, url_prefix='/') 

from .models import User, Note 

with app.app_context(): 

db.create_all() 

login_manager = LoginManager() 

login_manager.login_view = 'auth.login' 

login_manager.init_app(app) 

@login_manager.user_loader 

def load_user(id): 

return User.query.get(int(id)) 

return app 

def create_database(app): 

if not path.exists('website/' + DB_NAME): 

db.create_all(app=app) 

print('Created Database!') 
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8. TESTING 

The testing of the "Toxic Comments Classification Using NLP" system involves various methodologies to ensure its 

reliability, accuracy, and effectiveness. Here are key testing methodologies employed during different stages of 

development: TYPES OF TESTS Unit Testing: Test individual modules and components in isolation to ensure they 

function as intended. Verify that each unit of code, such as algorithms, preprocessing functions, and user interface 

components, produces the expected output. Integration Testing: Evaluate the interaction between different modules 

and components to ensure seamless integration. Verify that the system components work together as a cohesive unit, 

detecting and resolving any issues related to data flow and communication. Functional Testing: Validate that the 

system meets the specified functional requirements. Test core functionalities such as data analysis, predictive 

modeling, user interface interactions, and cross-disciplinary adaptability. User Interface (UI) Testing: Assess the 

usability and user-friendliness of the interface. Ensure that users can easily navigate through the system, input data, 

and interpret results. Performance Testing: Evaluate the system's responsiveness, scalability, and resource usage under 

different conditions. Test the application's ability to handle large datasets and complex computations without 

compromising performance. 

Regression Testing: Verify that new updates or modifications do not adversely impact existing functionalities. Re-run 

previously conducted tests to ensure that any changes have not introduced new errors or broken existing features. 

Security Testing: Assess the system's resistance to unauthorized access, data breaches, and other security 

vulnerabilities. Implement measures to safeguard sensitive data processed by the application. Cross-Browser and 

Cross-Platform Testing: Ensure compatibility with various web browsers and operating systems. Test the system's 

functionality on different platforms to guarantee a consistent user experience. Adaptive Learning and Continuous 

Improvement Testing: Assess the system's ability to adapt and improve over time. Validate that the adaptive learning 

mechanisms are effectively enhancing the system's predictive capabilities based on new data and scenarios. User 

Acceptance Testing (UAT): Involve end-users, researchers, and scientists in the testing process to gather feedback on 

the system's usability and effectiveness. Ensure that the system aligns with user expectations and fulfills their 

requirements 

9. CONCLUSION  

This study analyzes the performance of various machine learning models to perform toxic comments classification and 

proposes an ensemble approached called Lstm-cnn. The influence of an imbalanced dataset and balanced datasetusing 

random under-sampling and over-sampling on the performance of the models is analyzed through extensive 

experiments. Two feature extraction approaches including TF-IDF a are used to get the feature vector for models’ 

training. Results indicate that models perform poorly on the imbalanced dataset while the balanced dataset tends to 

increase the classification accuracy. Besides the machine learning classifiers like SVM, RF, GBM, and LR, the 

proposed RVVC and RNN deep learning models perform well with the balanced dataset. The performance with an 
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over-sampled dataset is better than the under-sampled dataset as the feature set is large when the data is over-sampled 

which elevates the performance of the models. Results suggest that balancing the data reduces the chances of models 

over-fitting which happens if the imbalanced dataset is used for training. Moreover, TF-IDF shows better 

classification accuracy for toxic comments The proposed ensemble approach Lstm-cnn demonstrates its efficiency for 

toxic and non-toxic comments classification. The performance of Lstm-cnn is superior both with the imbalanced and 

balanced dataset, yet, it achieves the highest accuracy of 0.97 when used with TF-IDF features The performance 

comparisonwith state-of-the-art approaches also indicates that Lstm-cnn shows better performance and proves good on 

small and large feature vectors. Despite the better performance of the proposed ensemble approach, its computational 

complexity is higher than the individual models which is an important topic for our future research. Similarly, dataset 

imbalance can overstate the results because data balancing using or random under-sampling approach may have a 

certain influence on the reported accuracy. Moreover, we intend to perform further experiments on multi-domain 

datasets and run experiments on more datasets for toxic comment classification. 
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