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ABSTRACT 

The volume of data in educational databases is growing rapidly, holding hidden insights for improving student 

performance. Data classification, a key technique in data mining and knowledge management, groups similar data 

objects together. Among classification algorithms, decision trees are popular due to their simplicity. However, 

traditional algorithms like ID3, C4.5, and CART are limited to small datasets stored entirely in memory. This issue is 

overcome by SPRINT and SLIQ algorithms, which efficiently handle large databases. In our study, we compare these 

algorithms' performance using existing datasets, with SPRINT showing the highest accuracy. 

Keywords: Data Mining, Educational Data Mining, Classification Algorithm, Decision trees, ID3, C4.5, CART, 

SLIQ, SPRINT. 

1. INTRODUCTION 

Education plays a pivotal role in advancing and improving a nation. It fosters enlightenment and positive development 

among its populace. Within the educational realm, the process of extracting insights is termed educational data mining 

(M. Sukanya et al., 2012). This emerging field intersects with established areas of research such as e-learning, 

adaptive hypermedia, intelligent tutoring systems, web mining, and data mining. Given the vast amount of data stored 

in educational databases, data mining becomes instrumental in uncovering valuable knowledge from these 

repositories. 

Various data mining techniques have been applied to educational data to enhance student performance, including 

regression, genetic algorithms, Bayesian classification, k-means clustering, association rules, and prediction. These 

techniques aid in understanding the learning process by identifying, extracting, and evaluating relevant variables. 

Among the most studied problems in data mining and machine learning is classification, which involves predicting 

categorical attributes based on other attributes. 

Classification methods such as decision trees, rule mining, and Bayesian networks are commonly utilized in 

educational data analysis to predict student behavior and examination performance. Decision trees, characterized by a 

flow-chart-like structure, are particularly popular due to their ease of implementation and comprehension. They 

efficiently predict outcomes such as the number of students likely to pass, fail, or progress to the next academic year. 

Decision tree construction is relatively fast compared to other classification methods. Moreover, trees can be easily 

converted into SQL statements for efficient database access.  

Decision tree classifiers often achieve comparable or superior accuracy compared to alternative methods. The 

implementation of decision tree algorithms can be tailored to suit different scenarios, whether in a serial or parallel 

fashion, depending on factors such as data volume, available memory, and algorithm scalability. 

C4.5 ALGORITHM 

The C4.5 algorithm, an advancement of the ID3 algorithm introduced by Quinlan Ross in 1993, builds upon Hunt's 

algorithm and shares its serial implementation approach. One of its key features is pruning, where internal nodes are 

replaced with leaf nodes to decrease error rates. Unlike ID3, C4.5 accommodates both continuous and categorical 

attributes during decision tree construction (Anju Rathee). 

C4.5 employs an improved tree pruning technique to mitigate misclassification errors caused by noise and excessive 

detail in the training dataset. Similar to ID3, data sorting occurs at each tree node to identify the optimal splitting 

attribute. It utilizes the gain ratio impurity method to assess the splitting attribute. 

SPRINT ALGORITHM 

The SPRINT algorithm, abbreviated for Scalable Parallelizable Induction of Decision Tree, was introduced by Shafer 

et al. in 1996. It represents a rapid and scalable decision tree classifier. Unlike traditional methods based on Hunt's 

algorithm, SPRINT adopts a recursive partitioning approach using breadth-first greedy technique on the training 

dataset until each partition belongs to the same leaf node or class.  

This algorithm can be implemented in both serial and parallel patterns to ensure optimal data placement and load 

balancing. 
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SPRINT utilizes two key data structures: an attribute list and a histogram, which are not memory resident. This feature 

renders SPRINT well-suited for handling large datasets, eliminating memory constraints on data. Moreover, it 

effectively manages both continuous and categorical attributes. 

CART ALGORITHM 

The CART algorithm, which stands for Classification and Regression Trees, was introduced by Breiman in 1984. 

Unlike traditional decision tree algorithms, CART constructs both classification and regression trees. Its classification 

tree construction relies on binary splitting of attributes, following Hunt's algorithm, and can be implemented serially. 

CART employs the Gini index splitting measure to select the splitting attribute. 

What sets CART apart from other Hunt's algorithm-based approaches is its ability to perform regression analysis 

through regression trees (S. Anupama et al., 2011). This feature enables forecasting of a dependent variable based on a 

set of predictor variables over a specified timeframe. 

In CART, various single-variable splitting criteria such as the Gini index and symgini are utilized, alongside a multi-

variable criterion, to determine the optimal split point. Data is stored at each node to facilitate this process. During 

regression analysis, a linear combination splitting criterion is employed. 

A version of CART, developed by Salford Systems, implements the original code by Breiman (1984). This enhanced 

version of CART addresses its shortcomings, resulting in a modern decision tree classifier with improved 

classification and prediction accuracy. 

ID3 ALGORITHM 

The Iterative Dichotomiser 3 (ID3) is a straightforward decision tree learning algorithm devised by Quinlan Ross in 

1986. It operates in a serial manner and is grounded in Hunt's algorithm. The fundamental concept behind the ID3 

algorithm involves constructing a decision tree through a top-down, greedy search across provided datasets, testing 

each attribute at every tree node (Tarun Verma et al.). 

To determine the most useful attribute for classifying a given dataset, the ID3 algorithm introduces a metric known as 

information gain. The aim is to minimize the number of questions asked in order to find an optimal classification 

approach. Information gain serves as a function to measure which questions yield the most balanced splits. ID3 

employs the information gain metric to select the splitting attribute, exclusively accepting categorical attributes for 

constructing the tree model. 

However, ID3 may yield less accurate results in the presence of noise, necessitating intensive pre-processing of data 

prior to building the decision tree model. 

SLIQ ALGORITHM 

The SLIQ algorithm, which stands for Supervised Learning In Quest, was introduced by Mehta et al. in 1996. It 

represents a fast and scalable decision tree algorithm that can be implemented in both serial and parallel patterns. 

Unlike traditional methods relying on Hunt's Algorithm, SLIQ adopts a recursive partitioning strategy using a breadth-

first greedy approach, which is integrated with a pre-sorting technique during the tree construction phase. SLIQ 

effectively handles both numeric and categorical attributes when building a decision tree model (Tarun Verma et al.). 

One drawback of SLIQ is its utilization of a class list data structure that resides in memory, thus imposing memory 

constraints on the data.  

Additionally, SLIQ employs the Minimum Description Length (MDL) principle for tree pruning after construction. 

MDL is an expensive technique for pruning trees, aiming to produce compact trees with minimal coding using a 

bottom-up approach. 

Table 1: Classifiers Accuracy 

Algorithm Correctly classified Instances Incorrectly ClassifiedInstances 

ID3 52.0833% 35.4167% 

C4.5 45.8333% 54.1667% 

CART 56.2500% 43.7500% 

It shows that a C4.5 technique has highest accuracy of 67.7778% compared to other methods. ID3 and CART 

algorithmsalsoshowed an acceptable level of accuracy. The tablealso shows the time complexity in seconds of various 

classifiers to build the model for training data. 
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Table2: Parameter Comparison of Decision tree algorithm 
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2. CONCLUSION 

In this study, three established decision tree algorithms (ID3, C4.5, and CART) were applied to educational data to 

predict students' performance in examinations. These algorithms were employed on internal assessment data to 

forecast students' outcomes in the final exam. The efficacy of these decision tree algorithms was assessed based on 

their accuracy and the time taken to generate the decision tree. The predictions generated by the system have aided 

tutors in identifying weaker students and enhancing their performance. 

Among the three algorithms, C4.5 emerged as the most suitable for small datasets, offering superior accuracy and 

efficiency compared to the others. However, the serial implementation of decision tree algorithms (ID3, C4.5, and 

CART) exhibits shortcomings in terms of classification accuracy when dealing with large training datasets. Moreover, 

these algorithms require that either the entire dataset or a significant portion of it remain permanently in memory, 

limiting their applicability to mining large databases. This limitation is addressed by the SPRINT and SLIQ decision 

tree algorithms. Nonetheless, there remains a need to develop more effective algorithms for decision trees. 
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