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ABSTRACT 

Accurate predictive models for surface temperature trends are necessary to support climate policy and decision-

making, as climate change has grown to be a major worldwide problem. For temperature forecasting, both 

contemporary machine learning methods and conventional statistical models have been extensively investigated, each 

with unique benefits. Support Vector Machine (SVM) and an enhanced ARIMA model are used in this work to assess 

zonal temperature trends using the Berkeley Earth Surface Temperature dataset. ARIMA and its seasonal extension, 

SARIMAX, are ideal for time-series forecasting, but SVM is a potent regression technique that catches intricate, non-

linear correlations. The study intends to improve ARIMA's predictive power for more accurate long-term forecasting 

by adding exogenous factors like year and month. 

According to experimental results, the enhanced ARIMA model predicts Earth's surface temperature better than SVM. 

With ideal hyperparameters, the SARIMAX model produced a reduced Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) as well as an R2 score of 0.9876 as opposed to 

0.9622 for SVM. These results imply that, in contrast to purely regression-based methods, time-series-based models 

that incorporate exogenous factors are more effective at capturing temperature trends and seasonal changes. With data-

driven evidence to support climate change mitigation plans and increase long-term forecasting accuracy, this research 

offers insightful information to climate scientists and policymakers. 

Keywords: Climate Change, Surface Temperature Prediction, Support Vector Machine, ARIMA, Time Series 

Forecasting, Machine Learning. 

1. INTRODUCTION 

With rising global temperatures having a substantial impact on ecosystems, weather patterns, and socioeconomic 

structures, climate change is one of the most pressing issues confronting humanity in the twenty-first century. 

Determining mitigation options and guiding policy decisions require an understanding of the ability to forecast surface 

temperature trends. Seasonal fluctuations, oceanic patterns, and greenhouse gas emissions are some of the variables 

that affect Earth's surface temperature. Because of non-linearity, seasonality, and outside influences, accurately 

modeling these trends is still a challenging undertaking. In order to increase forecasting accuracy, this work focuses on 

utilizing statistical and machine learning techniques to estimate zonal Earth surface temperatures. 

Time-series forecasting has made extensive use of conventional statistical models, such as the Autoregressive 

Integrated Moving Average (ARIMA) and its seasonal counterpart, the Seasonal Autoregressive Integrated Moving 

Average with Exogenous Variables (SARIMAX). These models are useful for long-term climate projections because 

they capture past patterns and trends. They frequently have trouble, though, with extremely intricate and non-linear 

correlations found in climate data. Because machine learning approaches like Support Vector Machines (SVM) can 

model non-linearity and generalize well across a variety of datasets, they have become strong alternatives. SVM is 

frequently used for classification and regression tasks, but in order to improve its predictive power when used to 

climate trend prediction, rigorous feature selection and hyperparameter adjustment are needed. 

The Berkeley Earth Surface Temperature dataset, which compiles 1.6 billion temperature readings from many sources 

to provide a thorough historical temperature record, is used in this work. The dataset makes it possible to analyze 

regional and global temperature patterns in great detail over long time periods. The purpose of the study is to evaluate 

how well an enhanced ARIMA model and SVM forecast temperatures. Hyperparameter adjustment is done to 
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maximize model performance, while feature engineering approaches are used to extract pertinent temporal 

components. The study improves ARIMA's prediction power by adding exogenous variables like year and month, 

which makes it more flexible to long-term and seasonal fluctuations. Using common statistical measures such as Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), R-squared (R²), and Mean 

Absolute Percentage Error (MAPE), the primary goal of this study is to assess the prediction performance of these 

models. The study's conclusions offer important new information on how well time-series forecasting techniques work 

for climate applications. The findings add to the expanding corpus of knowledge in climate modeling and provide 

direction for researchers, policymakers, and environmental scientists in creating evidence-based plans for mitigating 

and adapting to climate change. 

2. LITERATURE REVIEW 

Since machine learning (ML) approaches can handle complex, non-linear climate data, they have garnered a lot of 

attention in the prediction of Earth's surface temperatures. To increase accuracy and computing efficiency, recent 

research has concentrated on ensemble methods, deep learning strategies, and hybrid models. A Transformer-based 

model was presented by Wang et al. (2024) to find temporal and spatial correlations in climate data by using self-

attention techniques. According to their research, Transformers perform better than traditional LSTM models, 

especially when applied to extensive climatic datasets [1]. In a similar vein, Chen et al. (2024) used XGBoost to 

forecast extreme temperature anomalies while accounting for meteorological variables including humidity, wind 

speed, and air pressure. Their results demonstrated how well XGBoost can capture transient changes in local 

temperature trends [2]. 

A hybrid Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) model was created by Lee et 

al. (2023) to predict zonal temperatures. In order to improve forecasting accuracy across various climate zones, the 

CNN component retrieved spatial characteristics, and the LSTM component captured temporal dependencies [3]. A 

federated learning approach for climate modeling was presented by Gupta et al. (2023), enabling decentralized 

temperature predictions across several regions without exchanging raw data. The promise of privacy-preserving 

machine learning techniques in global climate studies was highlighted by their study [4]. Furthermore, Li et al. (2023) 

used an ensemble learning strategy that combined XGBoost, Random Forest (RF), and LSTM, showing that 

XGBoost's robustness against multicollinearity and feature selection skills produced better results [5]. 

To improve the accuracy of temperature predictions, hybrid models have also been investigated. CNNs and Support 

Vector Regression (SVR) were merged by Kumar et al. (2022), who used CNNs for feature extraction and SVR for 

regression-based forecasting. Their research showed that long-term temperature projections were more accurate [6]. 

Zhang and Wang (2021) looked into the use of artificial neural networks (ANNs) in temperature forecasting and 

discovered that because ANNs could capture non-linear climate trends, they performed better than classic regression 

models [7]. 

ML-based methods and conventional statistical models have also been contrasted. The efficiency of LSTM networks 

vs Gradient Boosting Decision Trees (GBDT) in forecasting temperature anomalies was examined by Chen et al. 

(2020). According to their findings, GBDT offered superior interpretability for structured climate data, even though 

LSTM models did a good job of capturing sequential dependencies [8]. After comparing ARIMA to machine learning 

models like Random Forest and XGBoost, Jones et al. (2019) came to the conclusion that ML models were more 

adaptable to non-stationary climate fluctuations [9]. The benefit of SVMs in managing non-linear climatic changes 

was further supported by Hansen et al. (2018), who investigated the application of Multiple Linear Regression (MLR) 

and SVMs for surface temperature prediction [10]. 

The groundwork for contemporary prediction methods was also established by early climate modeling initiatives. 

Because of its vast historical records, the NCEP/NCAR 40-Year Reanalysis dataset, which was first presented by 

Kalnay et al. (1996), is still often utilized in climate research [11]. Current climate modeling techniques are shaped by 

the General Circulation Models (GCMs), which were first developed by Hansen et al. (1988) for long-term global 

temperature forecasting [12]. 

3. METHODOLOGY 

This study employs a systematic methodology to analyze and compare the performance of statistical and machine 

learning models for zonal Earth surface temperature prediction. The workflow consists of data collection, 

preprocessing, feature engineering, model selection, hyperparameter tuning, evaluation, and visualization. 
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1. Data Collection 

The Berkeley Earth Surface Temperature (BEST) dataset, which offers long-term temperature records from a variety 

of sources, such as satellite observations, land-based weather stations, and marine buoys, is used in this work. Analysis 

of historical and current climatic trends is made possible by the dataset, which covers the years 1750 to the present. 

The following are the main characteristics that were extracted: 

• Temperature Variables: Mean, maximum, and minimum surface temperatures 

• Temporal Attributes: Year, month, and seasonal variations 

• Geospatial Features: Latitude, longitude, and altitude 

• Climatic Indicators: Atmospheric pressure, humidity 

2. Data Preprocessing 

Data preprocessing is crucial for ensuring high-quality inputs for machine learning models. The following steps are 

performed: 

• Handling Missing Values: Missing temperature readings are filled using interpolation and mean imputation. 

• Data Normalization: Temperature values are scaled using Min-Max normalization to improve model 

convergence. 

• Feature Engineering: Temporal attributes such as month and year are encoded as cyclical variables using sine 

and cosine transformations to preserve periodicity. 

• Train-Test Split: The dataset is split into 80% training and 20% testing subsets to evaluate model performance 

effectively. 

3. Feature Selection 

By gleaning valuable insights from unprocessed data, feature engineering increases predicted accuracy. Important 

changes consist of: 

• Temporal Encoding: Representing months and seasons using sine and cosine transformations to capture cyclic 

patterns. 

• Lag Features: Incorporating previous temperature values as predictors to capture historical dependencies in time 

series forecasting. 

• Climatic Indicators: Adding humidity, pressure, and wind speed as potential influencing factors. 

4. Machine Learning Models 

This study applies two predictive models: 

• ARIMA (AutoRegressive Integrated Moving Average): A statistical time-series model that captures linear 

patterns and trends in historical temperature data. It is well-suited for stationary datasets after differencing. 

• SVM (Support Vector Machines) with Radial Basis Function (RBF) Kernel: A machine learning model 

capable of modeling non-linear temperature variations by finding optimal decision boundaries in high-

dimensional feature space. 

5. Hyperparameter Tuning: 

To increase accuracy, model parameters must be optimized. The following methods are employed: 

• Grid Search & Cross-Validation: Finding the best combination of parameters using systematic tuning. 

• ARIMA Tuning: The optimal values for (p, d, q)—which represent autoregressive order, differencing, and 

moving average order—are determined through the Augmented Dickey-Fuller (ADF) test and Akaike 

Information Criterion (AIC). 

• SVM Tuning: The C (regularization parameter) and gamma (kernel coefficient) are adjusted to prevent 

overfitting. 

6. Model Evaluation 

Three crucial evaluation measures are employed to guarantee the correctness and dependability of the zonal Earth 

surface temperature forecast models: 
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• Mean Absolute Error (MAE): This measure calculates the average absolute difference between the actual and 

forecasted temperatures. A lower MAE indicates a higher level of model accuracy. 

• Root Mean Squared Error (RMSE): RMSE measures the standard deviation of the residuals (prediction errors). 

Because it gives bigger errors more weight than MAE, it is more vulnerable to outliers. 

• Coefficient of Determination (R² Score): The R2 score indicates how well the model explains the variance in 

temperature data. A number close to 1 indicates strong predictive ability, whereas a value close to 0 suggests poor 

performance. 

7. Visualization 

Several graphical methods are used to interpret and validate model predictions: 

• Time-Series Plots: Compare actual vs. predicted temperatures over time. 

• Residual Analysis: Examines differences between predicted and observed values to check model assumptions. 

• Error Distribution Graphs: Visualize how prediction errors are distributed to identify any systematic biases. 

Algorithm And Experimental Setup 

In order to estimate zonal Earth surface temperature, this study uses two predictive models: Support Vector Machine 

(SVM) and Autoregressive Integrated Moving Average (ARIMA). The selection of each model is based on its distinct 

advantages in managing temperature fluctuations and time-series forecasting. 

A traditional statistical method for identifying linear trends in time-series data is the ARIMA model. It is made up of 

three parts: Moving Average (MA), which models dependencies on previous errors; Integrated (I), which guarantees 

stationarity by differencing; and Autoregressive (AR), which makes predictions based on historical values. The Akaike 

Information Criterion (AIC) for optimal selection and the Augmented Dickey-Fuller (ADF) test for stationarity are 

used to estimate the model's order parameters (p, d, and q). A Seasonal ARIMA (SARIMA) model is also used, which 

incorporates periodicity and seasonal differencing modifications to account for seasonal temperature fluctuations. 

Seasonal trends in the dataset are used to fine-tune the SARIMA order (P, D, Q, m). 

Because it can identify non-linear relationships in climatic data, the SVM model is used. SVM can identify intricate 

temperature patterns by mapping input features into a higher-dimensional space using the Radial Basis Function 

(RBF) kernel. Grid search cross-validation is used to improve hyperparameters like the kernel coefficient (γ), which 

assesses the impact of individual data points, and the regularization parameter (C), which regulates the trade-off 

between bias and variance. This prevents overfitting and guarantees that the model generalizes effectively. Python 

with libraries like Scikit-learn, Statsmodels, TensorFlow, Pandas, and NumPy is used for the experimental setup. Mean 

imputation and interpolation are used to handle missing values in the Berkeley Earth Surface Temperature dataset as 

part of the preprocessing step. Trends, seasonality, and residual components are separated via time-series 

decomposition. By ensuring consistency in temperature values through feature scaling with Min-Max normalization, 

model stability is increased. 

The dataset is split between 20% testing and 80% training in order to properly evaluate the models' performance. 

Hyperparameter tuning is used to each model in order to improve predicted accuracy. The average magnitude of 

prediction mistakes is measured by the Mean Absolute Error, or MAE.  Root Mean Square Error (RMSE): Offers a 

more thorough evaluation by penalizing greater errors. The model's ability to explain temperature variance is 

measured by the R2 score.  In order to determine the most accurate and dependable model for predicting zonal Earth 

surface temperature, a comparative study is conducted at the end. This methodical methodology guarantees a 

comprehensive assessment, which helps provide more accurate and broadly applicable climate projections. 
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4. RESULTS 

 

Figure 1. Actual vs. Predicted Temperatures (ARIMA) 

 

Figure 2. Actual vs. Predicted Temperatures (SVM) 

Support Vector Machine (SVM) 

When it came to predicting zonal Earth surface temperatures, the SVM model showed excellent predictive accuracy. 

96.22% of the variance in temperature fluctuations was captured by the model, according to its R2 score of 0.9622. 

Moderate error margins were indicated by the Mean Squared Error (MSE) of 0.7012 and the Root Mean Square Error 

(RMSE) of 0.8374. Furthermore, a respectable degree of precision was indicated by the Mean Absolute Error (MAE) 

of 0.5346 and the Mean Absolute Percentage Error (MAPE) of 0.1373. Even while SVM was good at capturing non-

linear correlations, it needed a lot of hyperparameter tweaking, especially when it came to improving the 

regularization parameter (C) and kernel coefficient (γ). It was also more demanding for large-scale climate forecasting 

applications due to its relatively high processing cost. 

ARIMA 

When it came to prediction accuracy and error reduction, the Improved ARIMA model performed noticeably better 

than SVM. The most dependable model in this investigation, it was able to explain 98.76% of the temperature 

variance with an R2 score of 0.9876. using an MSE of 0.2144 and an RMSE of 0.4630, the prediction errors were 

significantly lower than using SVM. Additionally, the MAE was 0.3706 and the MAPE was 0.0567, indicating that 

zonal temperature patterns could be predicted with greater accuracy. Seasonal adjustments, better feature engineering, 

and the addition of exogenous factors like latitude, month, and historical temperature trends are all responsible for the 

improved accuracy of the Improved ARIMA model. Additionally, its ability to model both short-term and long-term 

dependencies made it a more suitable choice for time-series forecasting. 
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Figure 3. Model Comparison 

Comparative Analysis 

The most accurate and effective model for forecasting zonal Earth surface temperatures, according to the performance 

criteria, was Improved ARIMA. It outperformed SVM on all evaluation measures, achieving the lowest error values 

and the highest R2 score. Despite its ability to capture non-linear temperature changes, SVM was less feasible for 

large-scale deployments due to its high computing requirements and hyperparameter adjustment. However, because it 

successfully integrated seasonal changes and long-term trends while retaining a modest computing overhead, 

improved ARIMA offered a reliable and effective approach for climate forecasting. These results were further 

supported by visualizations including time-series graphs and error distribution plots, which showed that Improved 

ARIMA consistently generated more accurate and stable forecasts. 

As a result, Improved ARIMA is recommended as the best model for zonal Earth surface temperature prediction, 

ensuring higher accuracy and more reliable long-term climate projections. 

5. CONCLUSION 

By contrasting the effectiveness of the Support Vector Machine (SVM) and Improved ARIMA models, this study 

sought to improve the prediction of zonal Earth surface temperatures. Although both models demonstrated great 

predicting ability, it was determined through extensive testing that Improved ARIMA performed better than SVM in 

terms of accuracy, error minimization, and computing efficiency. 

With the best R2 score (0.9876), the Improved ARIMA model demonstrated a stronger capacity to capture both short-

term variations and long-term patterns in temperature data. It also demonstrated the lowest RMSE (0.4630), MAE 

(0.3706), and MSE (0.2144), demonstrating its accuracy in temperature predictions. The model is a trustworthy option 

for long-term forecasts because it successfully adjusted to climatic patterns through the inclusion of exogenous factors 

and seasonal components. SVM, on the other hand, captured intricate non-linear correlations in temperature changes 

and performed competitively. However, it was less effective for large-scale forecasting due to its increased computing 

cost and substantial hyperparameter tuning requirements. Even though SVM's R2 score of 0.9622 was decent, its 

larger error margins imply that it is not as good as Improved ARIMA for this assignment. 

All things considered, this study shows that statistical models such as Improved ARIMA can perform better in time-

series forecasting than machine learning models when they are tuned with the right feature engineering. For climate 

researchers and policymakers, the findings offer insightful information that aids in the development of more precise 

and evidence-based climate adaptation and mitigation plans. To further increase forecast accuracy, hybrid models may 

be investigated in future research. 
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6. FUTURE WORK 

The efficiency of Improved ARIMA over SVM for zonal Earth surface temperature prediction was shown in this 

work; still, a number of future research directions can improve forecasting precision and model resilience. The 

creation of hybrid models that combine statistical and machine learning techniques is one exciting avenue. By 

combining ARIMA with SVM or Artificial Neural Networks (ANN), it may be possible to better capture both linear 

and non-linear temperature patterns by utilizing the advantages of both approaches. Furthermore, the potential of deep 

learning methods like Transformer-based topologies and Long Short-Term Memory (LSTM) networks to represent 

intricate temporal patterns and long-term dependencies in climate data may be investigated. 

Incorporating more climate factors is a crucial component of future research. By accounting for more extensive 

climatic interactions, incorporating variables like air pressure, humidity, oceanic patterns (like El Niño), and 

greenhouse gas concentrations should increase model accuracy. Furthermore, more detailed information about 

regional temperature variations might be obtained by expanding this study to spatial-temporal analysis employing 

remote sensing data and geospatial machine learning. This method would be very helpful for local climate forecasts 

and adaptation plans. 

Lastly, the practical application of temperature predictions may be improved by combining real-time forecasting with 

adaptive models that update dynamically in response to fresh climate data. As a result, climate policy, environmental 

planning, and catastrophe preparedness would all benefit from more precise and current forecasts. Future studies can 

enhance the precision, scalability, and practical application of zonal temperature prediction models by tackling these 

issues, which will help develop more efficient methods for climate monitoring and mitigation. 
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