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ABSTRACT 

Combustion stability in premixed gas turbine systems is crucial for achieving high efficiency, reduced emissions, and 

reliable operation. This review paper explores the fundamental mechanisms of combustion instabilities, including static 

instabilities such as blow-off and flashback and dynamic instabilities driven by thermo-acoustic coupling. The influence 

of operating conditions, such as Reynolds number (Re), equivalence ratio, swirl stabilization, and oxygen fraction, on 

flame structure and stability is examined. Hydrogen enrichment is identified as a potential strategy for extending lean 

blowout limits, improving flame anchoring, and reducing carbon emissions. However, challenges such as increased 

flashback risk and NOx emissions require advanced combustor designs and control strategies. The paper also discusses 

oxy-fuel combustion as an alternative approach for carbon-neutral power generation, highlighting its challenges and 

operability limits. Large Eddy Simulations (LES) are reviewed as a predictive tool for modeling turbulent premixed 

flames and guiding the development of low-emission combustion technologies. The findings provide insights into 

optimizing gas turbine combustor designs for enhanced stability, fuel flexibility, and emissions control in the transition 

toward sustainable energy systems. 

Keywords: Combustion stability, premixed systems, blow-off, flashback, thermo-acoustic instabilities, hydrogen 

enrichment, swirl stabilization, oxyfuel combustion, Large Eddy Simulation (LES). 

1. INTRODUCTION 

Premixed combustion is widely used in gas turbines to enhance thermal efficiency and reduce pollutant emissions. 

However, achieving stable premixed combustion presents significant challenges due to complex interactions between 

flow dynamics, turbulence-chemistry coupling, and heat-release variations. Combustion instabilities can be broadly 

classified into: 

1. Static Instabilities: Blow-off and flashback, which result from an imbalance between flame propagation and local 

flow velocity, leading to flame detachment or upstream propagation. 

2. Dynamic Instabilities: Thermo-acoustic coupling, which arises when pressure oscillations align with combustor 

resonance frequencies, leading to self-sustaining pressure fluctuations and potential hardware damage. 

Hydrogen-enriched fuels and oxy-fuel combustion are emerging as promising alternatives for achieving low-carbon 

energy conversion in gas turbines. However, hydrogen’s high flame speed increases the risk of flashback, requiring 

innovative burner designs and control strategies. Similarly, oxy-fuel combustion, which uses pure oxygen instead of air, 

offers simplified CO₂ capture but introduces new challenges related to flame stability and high-temperature operation. 

This review explores the underlying mechanisms of combustion instabilities in premixed gas turbines, strategies for 

controlling them, and the implications of fuel flexibility, including hydrogen enrichment and oxy-fuel combustion. 

Numerical modeling approaches, such as Large Eddy Simulation (LES), are also examined as tools for optimizing 

combustor performance. 

2. METHODOLOGY 

This review is based on an extensive survey of experimental and numerical studies on premixed combustion instabilities. 

The methodology follows a structured approach: 

3. LITERATURE REVIEW 

o Identification of key studies focusing on blow-off, flashback, and thermo-acoustic instabilities in premixed 

combustion. 

o Analysis of experimental findings related to Reynolds number effects, equivalence ratio variations, and swirl 

stabilization. 
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Theoretical Framework: 

o Discussion of governing equations for combustion instabilities, including Damköhler number for blow-off 

predictions and flow-acoustic coupling mechanisms. 

o Examination of NOx formation pathways in lean premixed flames and mitigation strategies. 

Computational Modeling: 

o Review of LES and other computational fluid dynamics (CFD) techniques used to predict flame dynamics, stability 

limits, and emissions behavior. 

o Comparative evaluation of modeling approaches for different fuels, including methane, syngas, and hydrogen-

enriched blends. 

Technology Assessment: 

o Evaluation of fuel-flexible combustor designs, including Dry Low NOx (DLN) and Dry Low Emission (DLE) 

burners. 

o Assessment of the feasibility and operational challenges of oxy-fuel combustion for gas turbines. 

The findings are synthesized to provide a comprehensive understanding of combustion stability challenges and 

potential solutions for next-generation gas turbine systems. 

3.1 Combustion Stability and Instabilities in Premixed Systems 

Maintaining a stable premixed flame in gas turbines is a multifaceted challenge, influenced by burner and combustor 

design, fuel and oxidizer composition, turbulence severity, and air-fuel mixing dynamics. Premixed combustion 

instabilities are classified into static and dynamic categories. 

3.2 Static Instabilities: Blow-Off and Flashback 

Static instabilities, primarily blow-off and flashback, occur when the flame deviates from its intended anchor position, 

potentially leading to combustor failure and equipment damage. 

3.3 Blow-Off 

Blow-off transpires when the flame moves downstream due to an excessive flow velocity of the combustible mixture 

relative to the flame speed, leading to inadequate residence time for chemical reactions.  

A key metric for predicting blow-off is the Damköhler number (Da), which represents the ratio of residence time to 

chemical time. 

• Hydrogen-enriched fuels have lower blow-off limits, reducing operability at low equivalence ratios. 

• CO₂ dilution prolongs chemical timescales, diminishing flame stability. 

3.4 Flashback 

Flashback occurs when the flame propagates upstream due to local flow velocity being lower than the burning velocity, 

posing serious hardware risks. 

• Flashback mechanisms: 

o Boundary layer propagation 

o Turbulent flame propagation in swirling flows 

o Dynamic instability-driven flame propagation 

o Combustion-induced vortex breakdown (CIVB) 

• Hydrogen enrichment, while reducing blow-off, increases flashback risks due to hydrogen's high flame speed. 

• CFD studies reveal that flashback risk is significantly influenced by fuel composition, combustor pressure, and 

mass flow rates. 

• Swirl stabilization can mitigate blow-off but complicates flashback management. 

3.5 Dynamic Instabilities and Thermo-Acoustic Coupling 

Dynamic instabilities arise from the interaction between heat-release variations and combustor acoustics, leading to 

thermo-acoustic coupling. 

3.6 Mechanisms of Dynamic Instabilities 

Thermo-acoustic coupling occurs when pressure oscillations constructively align with combustor resonance frequencies, 

amplifying pressure waves and potentially causing hardware damage. 

• Pressure fluctuations should remain below 5% of the average combustor pressure to ensure stable operation. 
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• Lean premixed combustion (LPM) is particularly susceptible due to its operation near blow-off limits, exacerbating 

pressure oscillations through flame extinction and re-ignition cycles. 

• Hydrogen-enriched syngas affects dynamic instabilities by modifying flame velocity and equivalence ratios, 

altering pressure oscillation frequencies. 

3.7 Control Strategies for Dynamic Instabilities 

Control strategies are categorized into active and passive approaches: 

• Active Controls: Modify fuel injection rates or use real-time feedback systems to regulate heat-release rates. 

• Passive Controls: Alter combustor acoustics via design modifications, such as perforated liners, acoustic dampers, 

or tailored fuel injection strategies. 

Although passive methods are more practical, active strategies like phase-modulated spray injection show promise in 

reducing high-amplitude pressure oscillations. Research continues to refine these techniques to enhance combustor 

performance and reduce emissions, especially in hydrogen-enriched and oxy-fuel combustion scenarios. 

4. NOX EMISSIONS IN LEAN PREMIXED COMBUSTION 

4.1 Prompt NOx and Fuel NOx Formation 

NOx emissions in LPM combustion arise from two primary mechanisms: 

• Prompt NOx (Fenimore NOx): Results from rapid interactions between nitrogen (N₂) and hydrocarbon radicals 

(CH, CH₂) in fuel-rich conditions. In lean systems, its impact is minimal. 

• Fuel NOx: Occurs when nitrogen-containing fuels (e.g., ammonia, biomass-derived fuels) oxidize. Fuel NOx 

production depends on fuel nitrogen content and combustion kinetics. 

4.2 NOx Control Strategies 

Effective NOx reduction requires: 

• Optimized fuel selection 

• Combustion staging 

• Advanced emissions control techniques  

Future research should enhance predictive NOx models for hydrogen-enriched and ammonia-based combustion systems. 

5. STRATEGIES FOR OPTIMIZED COMBUSTION 

5.1 Fuel/Oxidizer Flexibility Strategy 

Fuel adaptability is critical in modern gas turbines due to increasing reliance on alternative fuels like syngas, biomass, 

and liquefied petroleum gas. Variations in fuel composition affect: 

• Chemical timeframes 

• Ignition delay 

• Blow-off limits 

• Dynamic stability 

5.2 Hydrogen-Enrichment Methodology 

Hydrogen is a promising clean fuel due to its high energy density and zero carbon emissions. 

• Enhances flame stability by increasing reaction rates and reducing the Lewis number. 

• Improves mixing and diffusion properties. 

• However, increased NOx emissions at constant equivalence ratios require leaner operation to maintain emissions 

control. 

5.3 Oxy-Fuel Combustion as an Alternative 

Oxy-fuel combustion, using pure oxygen instead of air, significantly reduces NOx emissions. 

• Challenges: 

o Requires pure oxygen supply 

o Introduces flame stability issues 

o Limits operational flexibility 

• Research focuses on advanced burner designs and computational modeling to optimize oxy-fuel combustion. 
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6. SWIRL STABILIZATION IN GAS-TURBINE COMBUSTION 

6.1 Swirl Generation Techniques 

Swirl stabilization enhances flame stability, prevents blow-off, and improves turndown performance. 

• Techniques: 

o Tangential injection 

o Axial vane swirlers 

o Radial vane swirlers 

o Mechanical spinners 

6.2 Swirl Number and Its Impact on Stability 

The swirl number (ratio of axial flux of angular momentum to axial thrust) quantifies swirl intensity. 

• Types of swirlers: 

o Axial swirlers: Moderate swirl numbers 

o Radial swirlers: High swirl numbers with minimal pressure loss 

o Hybrid swirlers: Enhanced efficiency at lower engine loads 

• Excessive swirl can cause vortex breakdown, disrupting stability. 

6.3 Effects of Swirl on Stability and Emissions 

• Expands lean-premixed flame operability by increasing blow-off resistance. 

• Swirl numbers > 0.6 create well-defined recirculation zones, enhancing flame stability. 

• Higher swirl numbers reduce blow-off limits for hydrogen but improve flashback resistance. 

• Trade-off: Increased residence time improves CO oxidation but raises NOx emissions. 

• Advanced combustor designs, such as vortex generators, reduce NOx and CO emissions by 20%. 

7. NUMERICAL SIMULATION OF PREMIXED COMBUSTION 

7.1 Modeling Approaches 

Numerical simulations are essential for predicting combustion performance and guiding burner design. 

• Direct Numerical Simulation (DNS): Highest accuracy but computationally expensive. 

• Reynolds-Averaged Navier-Stokes (RANS): Common in engineering but lacks resolution of turbulent eddies. 

• Large Eddy Simulation (LES): Balances accuracy and cost, effectively capturing transient combustion dynamics. 

7.2 LES Governing Equations 

LES models filter flow variables to separate large and small turbulence scales, incorporating conservation laws for mass, 

momentum, and energy. 

7.3 LES Applications in Premixed Combustion 

LES is widely used to study: 

• Lean premixed swirl flames 

• Flashback and blow-off dynamics 

• Effects of heat flux and burner configurations 

• Impact of swirl generator placement on combustion stability 

Studies reveal that LES provides accurate predictions of flame propagation and stability, guiding the design of low-

emission gas turbine combustors. Further refinements are necessary for unstable combustion conditions, particularly 

hydrogen-air premixed flames, due to hydrogen’s high diffusivity and propensity for combustion instabilities. 

8. ADVANCED BURNER DESIGNS FOR PREMIXED COMBUSTION IN GAS 

TURBINES 

8.1 Introduction 

Advanced burner designs have been developed to enhance combustor stability and performance in gas turbines using 

premixed combustion techniques. These designs aim to improve flame stability, reduce emissions, and increase 

efficiency. Key technologies include: 

• Stagnation Point Reverse Flow (SPRF) burner 

• Internal flue gas recirculation (IFGR) 
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• Dry low-NOx (DLN) or dry low-emission (DLE) combustors 

• Environmental (EV) burners 

• Micromixer (MM) combustors 

• Perforated plate (PP) burner 

• Syngas-fueled micromixing gas turbine burners 

These innovations play a significant role in optimizing gas turbine combustion performance and sustainability. 

8.2 Emission Reduction and Carbon Capture Strategies 

Despite progress in reducing NOx and CO emissions through advanced combustion technologies, lean premixed air 

combustion alone does not achieve complete emission control. Carbon capture technologies must be integrated to further 

mitigate emissions. CO₂ is a major greenhouse gas, with annual emissions exceeding 30 gigatonnes. Carbon capture 

systems are classified into: 

• Pre-combustion capture 

• Oxy-fuel combustion 

• Post-combustion capture 

Oxy-fuel combustion, in particular, is advantageous for gas turbines as it simplifies CO₂ separation by producing only 

CO₂ and H₂O. However, combustion stability and efficiency remain challenges in oxy-fuel systems. 

8.3 Fuel Flexibility and Hydrogen Enrichment 

Fuel-flexible burners are essential for ensuring stable combustion under varying fuel compositions. Hydrogen-enriched 

combustion is a promising approach to improve combustor performance and reduce emissions. Hydrogen enrichment 

influences: 

• Flame stability 

• NOx emissions 

• Flashback risk 

By adjusting the hydrogen concentration, engineers can balance performance and emission control. 

8.4 Oxy-Fuel Combustion for Zero-Emission Power Plants 

Oxy-fuel combustion is recognized as a key technology for zero-emission power plants (ZEPPs). However, its viability 

is hindered by the high energy demand of cryogenic air separation units (ASUs) for pure oxygen production. Alternative 

oxygen separation methods include: 

• Membrane-based oxygen separation 

• High-temperature membrane reactors (HTMRs) 

Research aims to reduce the economic and energy burden of ASUs while maintaining the benefits of oxy-fuel 

combustion. 

8.5 Future Outlook on Gas Turbine Combustion Technologies 

With rising global energy demand and stricter emission regulations, innovative combustion solutions are crucial. The 

focus of future burner designs will be on: 

• Optimizing combustion stability 

• Enhancing fuel adaptability 

• Reducing NOx and CO₂ emissions 

Comparisons between oxy-fuel and air-combustion environments provide insights into their operational efficiency and 

emission characteristics. 

9. COMBUSTION OF SYNGAS: CHALLENGES AND CHARACTERISTICS 

9.1 Introduction to Syngas as a Fuel 

Syngas is a mixture of hydrogen (H₂), carbon monoxide (CO), and carbon dioxide (CO₂). It is produced through: 

• Gasification of hydrocarbons and waste materials 

• Industrial byproducts such as coke-oven gas 

• Fossil fuel reforming 
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Its hydrogen-rich nature makes it an attractive alternative fuel for gas turbines. 

9.2 Integrated Gasification Combined Cycle (IGCC) Technology 

IGCC plants utilize syngas combustion with pre-combustion carbon capture. The water-gas shift reaction converts CO 

into CO₂, enabling its removal before combustion, resulting in a hydrogen-rich syngas fuel. 

9.3 Challenges in Transitioning to Syngas in Gas Turbines 

Natural gas-fired gas turbines must undergo modifications to burn syngas due to: efficiently 

• Increased flashback risk from high flame speeds 

• Higher fuel flow rates to match natural gas power output 

• Lower Wobbe Index (WI), requiring larger fuel injectors 

Research focuses on combustion dynamics, emissions, and operational safety to enable syngas adoption. 

9.4 Impact of Syngas Composition on Flame Stability 

Studies have examined the effects of H₂ and CO variations, but limited research exists on H₂O and CO₂ dilution. 

These components influence: 

• Flame temperature 

• Radiative heat transfer 

• Ignition delay 

Higher hydrogen concentrations improve stability, while CO₂ and H₂O dilution impact ignition delay and flame behavior. 

10. AMMONIA COMBUSTION AS A LOW-CARBON ENERGY SOURCE 

10.1 Advantages and Challenges of Ammonia as a Fuel 

Ammonia (NH₃) is gaining attention as a carbon-free fuel, but its combustion faces obstacles due to: 

• High ignition energy requirements 

• Slow reaction kinetics 

• High NOx emissions 

10.2 Research Efforts to Improve Ammonia Combustion 

Methods to enhance NH₃ combustion include: 

• Hydrogen blending for better reaction rates 

• Ammonia-methane mixtures to enhance flame stability 

• Advanced burner designs for optimized air-fuel mixing 

Further research is needed to ensure reliable NH₃ combustion for large-scale applications. 

11. FUEL-FLEXIBLE PREMIXED OXY-FUEL COMBUSTION 

11.1 Integration of Hydrogen-Enriched Fuels 

The demand for low-carbon fuels has led to increased research on hydrogen-enriched gas turbines. Key findings 

include: 

• Water vapor dilution reduces flame speed 

• CO₂ dilution alters flame velocity and stability 

• Hydrogen enrichment lowers CO emissions and improves efficiency 

11.2 Hydrogen-Enriched Syngas in Gas Turbines 

Hydrogen-enriched syngas is a low-carbon, high-reactivity fuel alternative. Advantages include: 

• Higher reaction rates improving thermal efficiency 

• Lower CO emissions 

• Expanded flammability limits for operational flexibility 

However, challenges such as high NOx emissions, flashback risks, and combustion instabilities require innovative 

burner designs. 

12. PROSPECTS AND RESEARCH DIRECTIONS 

12.1 Advancing Fuel-Flexible Combustion Technologies 

To achieve sustainable power generation, research is focused on: 

• Developing advanced burners for multi-fuel adaptability 
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• Optimizing turbulence-chemistry interactions 

• Hybrid combustion methods, such as hydrogen-biofuel co-firing 

Future gas turbines will incorporate hydrogen-enriched syngas, ammonia combustion, and oxy-fuel techniques for low-

emission, high-efficiency performance. 

13. GLOBAL DEVELOPMENTS IN CCS/CCUS TECHNOLOGIES 

13.1 Strategies for CO₂ Utilization 

Carbon Capture, Utilization, and Storage (CCUS) is essential for reducing industrial emissions. However, global CO₂ 

utilization remains below 1% due to thermodynamic stability and energy costs. 

13.2 CO₂ Utilization Methods 

• Direct Utilization: 

o Water treatment, beverage carbonation, enhanced oil recovery (EOR) 

• Chemical Conversion: 

o Hydrogenation, carbonylation, polymer production 

o Biological carbon fixation via microalgae cultivation 

Microalgae cultivation, for example, can absorb 1.8 tons of CO₂ per ton of biomass, highlighting its potential. 

13.3 Research Focus 

Current efforts integrate CO₂ capture with conversion processes to establish closed-loop, carbon-neutral solutions. 

Research priorities include: 

• Reducing energy consumption in CO₂ capture 

• Enhancing catalyst efficiency 

• Improving scalability for commercial applications 

14. INNOVATIONS IN GAS TURBINE COMBUSTION TECHNOLOGIES 

14.1 Recent Advances 

Gas turbines have evolved to meet demands for higher efficiency, lower emissions, and greater fuel flexibility. 

Innovations include: 

• SPRF combustors for enhanced stability 

• DLN/DLE burners for NOx reduction 

• Micromixer combustion for uniform fuel-air mixing 

14.2 Future Research Areas 

• Hybrid combustor designs for alternative fuels 

• Optimizing oxygen separation for oxy-fuel systems 

• Advancements in low-swirl injectors for hydrogen-rich fuels 

As global energy demands evolve, continued research in low-carbon combustion strategies will shape the future of 

gas turbine technology. 

15. FLAME STRUCTURE AND OXYGEN FRACTION EFFECTS ON COMBUSTION 

INTENSITY 

15.1 Reynolds Number Influence on Flame Configuration 

Flame images captured at different Reynolds numbers (Re) revealed key trends in combustion dynamics: 

• Higher Re broadened operability, allowing flames to sustain leaner conditions before blowout. 

• Larger flame structures at higher Re indicated enhanced turbulence-induced mixing and increased reactant 

residence times. 

• Flame morphology remained similar at constant adiabatic flame temperature (T_ad) and Re, confirming their 

predictive reliability for flame behavior. 

These findings highlight the strong interplay between flow properties (Re) and combustion characteristics (T_ad) in 

defining flame behavior. 

15.2 Oxygen Fraction (OF) Effects on Flame Stability and Heat Release 

Oxygen fraction (OF) significantly impacts flame stability and reaction kinetics: 

• Higher OF (30% to 40%) increased flame speed by 2.4 times. 
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• Flames with higher OF anchored closer to the burner throat, enhancing stability. 

• Thermal Distributions: 

• Higher OF raised flame temperature by 200 K at an axial distance of 6.35 cm. 

• Increasing Re from 7000 to 9000 led to a smaller 100 K temperature increase, demonstrating that OF exerts a 

stronger influence on combustion intensity than Re. 

These results suggest that while oxygen fraction primarily governs combustion intensity and stability, Re enhances fuel-

air mixing and turbulence effects. 

16. OPERABILITY OF FUEL/OXIDIZER-FLEXIBLE GAS TURBINE COMBUSTORS 

16.1 Oxidizer Flexibility and Oxy-Combustion 

Modern gas turbines must accommodate fuel/oxidizer flexibility to support low-emission power generation and carbon 

capture (CCS) integration. 

Air-Fuel Combustion Challenges: 

• Produces diluted CO₂ exhaust, complicating post-combustion carbon capture. 

• Oxy-Fuel Combustion Advantages: 

• Uses pure O₂, generating an exhaust stream of only CO₂ and H₂O, simplifying carbon capture. 

• CO₂ dilution regulates flame temperature, preventing material degradation. 

• Requires Exhaust Gas Recirculation (EGR) to maintain flame stability. 

Transitioning from air-based to oxy-fuel combustion introduces challenges due to lower flame speeds and changes in 

recirculation zone behavior. 

16.2 Hydrogen Enrichment and Fuel Flexibility 

Hydrogen as a Stability Enhancer 

Hydrogen-enriched flames exhibit: 

• Higher flame speed, extending lean stability limits. 

• Lower NOx emissions due to reduced adiabatic flame temperature. 

• Increased flashback risk, requiring swirl-stabilization. 

Stability Maps for Hydrogen-Enriched Oxy-Fuel Flames 

• Increasing hydrogen fraction (HF) shifts blowout limits toward leaner conditions. 

• Higher oxygen fractions (OF) extend operability but mainly affect blowout over flashback. 

• Elevated throat velocity (U_in) mitigates blowout but accelerates flashback, underscoring the importance of flow 

control. 

Large-Eddy Simulations (LES) confirm that hydrogen enrichment: 

• Enhances radical production and accelerates flame propagation. 

• Reduces ignition delay, improving combustion stability. 

17. FUTURE DIRECTIONS IN GAS TURBINE COMBUSTOR DESIGN 

1. Optimizing O₂/CO₂ Ratios for Oxy-Combustion – Fine-tuning dilution levels for stability and emissions control. 

2. Hydrogen Enrichment for Extended Operability – Ensuring flashback mitigation through swirl-stabilization and 

injector design. 

3. Dynamic Combustion Control Systems – Real-time fuel-oxidizer composition adjustments for stable operation. 

4. Integration with Carbon Capture (CCS) – Leveraging oxy-fuel combustion for efficient CO₂ sequestration. 

5. Advancing LES Modeling – Refining numerical simulations for predictive analysis and design optimization. 

Modern gas turbines can achieve stable, low-emission combustion by addressing Re effects, fuel flexibility, and oxidizer 

composition, facilitating the transition to carbon-neutral power generation. 

18. FLAME SHAPE ANALYSIS IN HYDROGEN-ENRICHED OXY-METHANE 

COMBUSTION 

18.1 Effect of Hydrogen Enrichment on Flame Shape 

The impact of hydrogen fraction (HF) on the flame structure was analyzed at a fixed equivalence ratio (ϕ = 1.0) across 

different throat velocities (U_in). Hydrogen enrichment significantly altered flame shape, brightness, and turbulence 

levels, revealing enhanced combustion dynamics. 
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Key Observations: 

1. Flame Compactness and Reaction Kinetics 

o At 0% HF (pure methane combustion), flames spread across the combustor, conforming to confinement 

boundaries. 

o With increasing HF, flames became shorter, brighter, and highly turbulent, signifying: 

▪ Increased chemical reaction rates. 

▪ Higher flame speed. 

o Higher hydrogen content reduced flame height, enhancing combustion intensity and increasing audible 

combustion noise. 

2. Flashback Occurrence 

o At a throat velocity of 4.4 m/s, flashback occurred at HF > 50%. 

o At 5.2 m/s and 6.0 m/s, flashback occurred at HF > 40%. 

o Higher turbulent flame speeds at increased hydrogen fractions led to premature upstream flame propagation. 

o Audible noise intensified as flashback conditions were approached, indicating instability buildup. 

18.2 Equivalence Ratio Influence on Flame Transition 

At HF = 50%, three distinct flame configurations emerged based on ϕ: 

1. Cup-shaped flames (ϕ < 0.75) – Elongated, less luminous flames with lower reaction rates. 

2. V-shaped Flames (0.75 < ϕ < 0.85) – Intermediate stability regime with increased brightness and turbulence. 

3. Vase-Shaped Flames (ϕ > 0.85) – Shorter, high-intensity flames with enhanced chemical kinetics. 

18.3 Velocity Influence on Flame Transition 

Throat velocity significantly affected flame shape at ϕ < 0.8: 

• At 4.4 m/s, transition from cup-shaped to vase-shaped flames occurred at ϕ = 0.75 - 0.80. 

• At 5.2 m/s, transition occurred at ϕ = 0.65 - 0.70. 

• At 6.0 m/s, transition occurred at ϕ = 0.60 - 0.65. 

Higher velocity reduced equivalence ratio transition points, indicating that increased turbulence enhances flame 

compactness and stability. 

18.4 Flame Stabilization and Outer Recirculation Zone (ORZ) 

A shift from Inner Shear Layer (ISL) stabilization to Outer Recirculation Zone (ORZ) anchoring was observed: 

• 4.4 m/s: ϕ = 0.7 

• 5.2 m/s: ϕ = 0.6 

• 6.0 m/s: ϕ = 0.6 

This shift suggests that hot recirculating gases play a crucial role in flame retention and stability. 

18.5 Effect of Adiabatic Flame Temperature (AFT) on Flame Shape 

At AFT = 2000 K, findings indicate: 

• Flame structure is primarily governed by hydrogen fraction and velocity, not AFT. 

• Higher HF resulted in shorter flames, confirming faster combustion kinetics. 

• Similar flame configurations were observed in pure hydrogen and hydrogen-enriched flames. 

18.6 Flame Behavior Near Stability Limits 

• Near Blowout: Flames shrank but remained confined within the combustor. 

• Near Flashback: Flame brightness decreased, but structure remained compact. 

These results contribute to the development of hydrogen-enriched combustors, optimizing stability, turbulence, and 

emissions control for next-generation gas turbines. 

19. CONCLUSION 

This review highlights the critical role of combustion stability in premixed gas turbines and the challenges associated 

with managing blow-off, flashback, and thermo-acoustic instabilities. The key findings include: 

1. Static Instabilities: The Damköhler number influences blow-off and is more pronounced in hydrogen-enriched 

flames due to their higher reaction rates. High hydrogen fractions exacerbate flashback but can be mitigated through 

swirl stabilization and injector design modifications. 
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2. Dynamic Instabilities: Thermo-acoustic coupling is particularly severe in lean premixed combustion due to its 

proximity to blow-off limits. Active and passive control strategies can mitigate instability effects, including phase-

modulated fuel injection and acoustic damping. 

3. Fuel Flexibility: Hydrogen enrichment improves lean blowout resistance but increases flashback risk, requiring 

optimized fuel-air mixing and flame anchoring techniques. Oxy-fuel combustion presents a pathway to zero-

emission power generation but necessitates advanced recirculation strategies for maintaining flame stability. 

4. Numerical Simulations: LES provides a robust framework for understanding turbulence-chemistry interactions 

and predicting combustion instability trends. Further refinement of modeling techniques is needed to improve 

predictive accuracy under real-world operating conditions. 

Future research should focus on integrating adaptive combustion control systems, refining low-swirl injectors for 

hydrogen-enriched fuels, and optimizing oxy-fuel combustor designs to balance efficiency, emissions, and stability. The 

continued advancement of premixed combustion technologies will play a crucial role in the transition to sustainable, 

low-emission power generation. 
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