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ABSTRACT 

Software defect prediction (SDP) is a critical task in software engineering, aimed at improving software quality by 

identifying defective modules before deployment. Conventional defect detection techniques are frequently laborious 

and prone to human error. Automated defect prediction models have drawn a lot of attention as a result of improvements 

in Machine Learning (ML) classification algorithms. These models increase the effectiveness of defect management by 

using software metrics and historical defect data to categorise software modules as either defective or non-defective.In 

this study, we compare different classification models, such as Lazy-IBK, Lazy-K Star, SMO, Decision Stump, J48, and 

Naïve Bayes, and measure the effect of ML classification algorithms on software defect prediction. Key performance 

metrics like accuracy, Kappa statistic, mean absolute error (MAE), root mean squared error (RMSE), relative absolute 

error (RAE), and root relative squared error (RRSE) are used in the study to assess these algorithms. The study develops 

and tests two hypotheses in order to validate the results: (H01) that ML classification algorithms have no discernible 

effect on defect prediction, and (H02) that there are no discernible differences between different classification models. 

The experimental findings show differences in error rates and predictive accuracy, emphasising the superiority of some 

models over others in the classification of software defects. Insights into the top-performing machine learning classifiers 

for defect prediction are provided by the research findings, which benefit software engineering by empowering 

developers to choose effective models for defect detection. To further increase prediction accuracy and dependability, 

future studies can investigate the combination of deep learning methods and hybrid models. 

Keywords: Machine Learning, Software Defect Prediction, Deep Learning 

1. INTRODUCTION 

The Software defect prediction (SDP) plays a crucial role in enhancing software quality and reducing maintenance costs 

by identifying potential defective modules early in the software development lifecycle. Manual code reviews, rule-based 

methods, and static analysis are the mainstays of traditional defect prediction approaches, which are frequently 

laborious, prone to errors, and ineffective for large-scale software systems. The increasing complexity of modern 

software demands intelligent and automated methods to detect defects effectively.As machine learning (ML) has 

advanced, classification algorithms have become increasingly effective tools for anticipating software flaws. ML-based 

models leverage historical defect data and software metrics to learn patterns associated with defective and non-defective 

code segments. New software components can then be categorised by these models according to how likely they are to 

have flaws. In software defect prediction, well-known classification algorithms like Decision Trees, Random Forest, 

Support Vector Machines (SVM), Naïve Bayes, K-Nearest Neighbours (KNN), and Deep Learning models have shown 

encouraging results. 

Several variables, such as feature selection, model optimisation, and training data quality, affect how well defect 

prediction models work. Enhancing prediction accuracy requires the use of feature engineering techniques, such as static 

code attributes (e.g., lines of code, cyclomatic complexity, code churn) and process metrics (e.g., historical defect 

density, change frequency). In order to improve the generalisability and resilience of defect prediction models, hybrid 

and ensemble learning approaches have also been investigated. This study aims to explore and compare different 

machine learning classification algorithms for intelligent software defect prediction. This study offers insights into the 

best methods for defect detection by assessing their performance using open-source repositories and standard software 

defect datasets like NASA PROMISE. By facilitating proactive defect management techniques, the findings aid in the 

creation of software systems that are more dependable and effective. 

2. LITERATURE REVIEW 

Albattah, W., & Alzahrani, M. (2024) Software bug prediction helps identify defects early in the development process, 

reducing costs and improving reliability. Using a dataset of 60 software metrics from five public bug datasets, this study 

assesses eight machine learning and deep learning models. Cohesion, coupling, complexity, documentation inheritance, 

and size metrics are among the important quality indicators that are used for classification. Accuracy, weighted F1 score, 

binary F1 score, and macro F1 score are used to gauge performance. With an accuracy of 0.87, the results demonstrate 
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that the LSTM deep learning model performs better than the others. Software maintainability research trends and 

challenges were summarised in a systematic literature review on the topic by Malhotra and Chug (2016). The study 

identifies the primary determinants of maintainability, such as software metrics, design patterns, and code complexity. 

The authors talk about different statistical and machine learning models that are used to predict maintainability and 

propose that new methods like search-based optimisation and deep learning could improve maintainability evaluation. 

This study offers a solid starting point for future research on automated software quality assessment. The issue of self-

admitted technical debt (SATD) in open-source software projects was investigated by Huang et al. (2018). The authors 

created models that automatically detect situations in which developers acknowledge technical debt in code comments 

by utilising text mining techniques. According to their findings, SATD can have a major effect on the maintainability 

and quality of software. Additionally, by identifying latent software issues before they become more serious, natural 

language processing (NLP) techniques can improve software quality prediction models. 

A data-efficient learning method for forecasting software performance in configurable systems was presented by Guo 

et al. (2018). By introducing methods that reduce the need for comprehensive performance measurements, the authors 

increased the efficiency of software optimisation. They applied machine learning models to predict system behavior 

with limited training data, emphasizing the importance of feature selection and sampling strategies. In addition to 

offering insights into creating more flexible machine learning models for software defect prediction, the study advances 

the field of performance-aware software engineering. A thorough overview of search-based model-driven engineering 

(SBMDE), which incorporates search-based optimisation methods into software modelling and development, is 

provided in this paper. The authors examine several metaheuristic algorithms for software model optimisation, including 

simulated annealing and genetic algorithms. In addition to highlighting how artificial intelligence (AI) can improve 

software design choices, the paper makes the case that machine learning could improve software defect prediction and 

maintainability even more. 

The use of machine learning algorithms to forecast software module fault-proneness was investigated by Gondra (2008). 

The study evaluates the efficacy of several classification models, such as support vector machines (SVMs), decision 

trees, and neural networks, in identifying software flaws. The findings show that feature selection and ensemble learning 

strategies increase the accuracy of fault prediction. This research is particularly relevant for developing automated defect 

prediction systems. 

A neural attention model was presented by Iyer et al. (2016) in order to automatically produce source code summaries. 

To produce human-readable explanations of code functionality, the authors used deep learning techniques, specifically 

recurrent neural networks (RNNs) with attention mechanisms. By strengthening code comprehension and review 

procedures, AI-based techniques can increase software maintainability and defect prediction, according to this research, 

which also helps automate software documentation. 

In order to forecast software maintainability in object-oriented applications, Mishra and Sharma (2015) investigated 

fuzzy systems based on adaptive networks. Their method creates a clear, understandable model for software quality 

evaluation by fusing machine learning and fuzzy logic. In assessing software maintainability, the study highlights the 

significance of object-oriented metrics like inheritance depth and coupling. The findings imply that hybrid machine 

learning techniques increase the accuracy of maintainability predictions. 

Ahmed and Al-Jamimi (2013) presented a fuzzy-based machine learning model for predicting software maintainability. 

To create a prediction system that is easier to understand and interpret, the study combines fuzzy logic with decision 

trees and neural networks. The authors contend that fuzzy-based methods are better suited for predicting software 

maintainability because traditional statistical models are less adaptable when dealing with ambiguous and imprecise 

data. This study offers important insights into fuzzy logic applications in predictive modelling, despite its primary focus 

on the machining process. The authors talk about how machine learning and fuzzy logic can be combined to improve 

software quality and defect prediction. According to the study, fuzzy systems are a promising method for software 

engineering applications because they can effectively handle uncertainty and imprecise software metrics. 

A multi-objective optimisation model was put forth by Chhabra (2017) in an effort to enhance object-oriented package 

structure. To improve software modularity and maintainability, the study makes use of optimisation algorithms and 

weighted class connections. According to the study's findings, software architecture can be optimised through search-

based and machine learning approaches, which lower maintenance costs and defect rates. Three empirical studies on the 

use of ensemble learning techniques to predict software maintainability were carried out by Elish et al. (2015). When 

compared to conventional machine learning models, the study finds that bagging, boosting, and stacking ensembles 

greatly increase prediction accuracy and robustness. The study backs up the claim that software defect prediction models 

can be improved through ensemble learning. 
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3. RESEARCH METHODOLOGY 

In software defect prediction (SDP), the AR1 dataset is a generally used benchmark dataset for assessing the 

performance of machine learning classification algorithms. Software metrics and defect labels make up it and enable 

the identification of trends separating faulty from non-defective software modules. The dataset includes several 

attributes taken from process metrics and static code elements taken from software source code. These characteristics 

are fundamental markers of software quality and help to train predictive models to label software modules as either non-

defective or defective. 

Structural characteristics of the code are measured in the dataset by means of code complexity metrics including Lines 

of Code (LOC), Cyclomatic Complexity (CC), and Halstead Metrics). Process metrics like change count, defect density, 

and historical modification frequency—which help to show how software components have evolved over time—also 

are included. Target variable is the defect label—binary classification: defective or non-defective. Usually employing 

10-fold cross-valuation, the dataset guarantees a fair assessment of several machine learning classifiers. This allows a 

strong comparison of models depending on performance criteria including True Positive (TP), False Positive (FP) rate, 

Precision, Recall, F-Measure, and Area Under the Curve (AUC). 

Objectives: 

1. To measure the impact of Machine Learning Classification Algorithms on software defect prediction. 

2. Comparative analysis of various classification machine learning algorithms used for software defect prediction. 

Hypotheses: 

Based on the above objectives following hypotheses was being framed: 

H01: There is no significant impact of Machine Learning Classification Algorithms on software defect prediction. 

Ha1: There is significant impact of Machine Learning Classification Algorithms on software defect prediction. 

H02: There is no significant difference between various classification machine learning algorithms used for software 

defect prediction. 

Ha2: There is significant difference between various classification machine learning algorithms used for software defect 

prediction. 

4. RESULTS AND DISCUSSION 

4.1 Comparative Analysis of Different Machine Learning: 

The Table 4.1 evaluates several machine learning classifiers for software defect prediction using 10-fold cross-valuation 

on the AR1 dataset. Multiple performance criteria—Kappa Statistic, Accuracy, Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), Relative Absolute Error (RAE), Root Relative Squared Error (RRSE)—are used to evaluate the 

classifiers. The chosen models show differences in classification performance, according the results. 

Table 4.1: Performance Evaluation of Different Classifiers on the AR1 Dataset 

Using 10-Fold Cross-Validation (Kappa Statistic, Accuracy, MAE, RMSE, RAE, RRSE) 

Classifier 
Kappa 

Statistic 

Correctly 

Classified 

Instances 

(Accuracy) 

Mean 

Absolute 

Error 

Root 

Mean 

Squared 

Error 

Relative 

Absolute 

Error (%) 

Root 

Relative 

Squared 

Error (%) 

Lazy-IBK 0.3042 110 (90.90 %) 0.0964 0.29 66.76 113.74 

Lazy-K Star 0.0293 104 (85.95%) 0.1421 0.3681 98.46 140.08 

SMO -0.0151 111 (91.73%) 0.0826 0.2875 57.25 109.40 

Decision Stump -0.0278 110 (90.91%) 0.1444 0.2995 100.0 113.97 

J48 0.0785 109 (90.08%) 0.127 0.2997 87.98 114.05 

Naïve Bayes 0.2331 103 (85.12%) 0.1518 0.3734 105.15 142.09 

With the highest accuracy (91.73%), SMO followed closely by Lazy-IBK (90.90%), and Decision Stump (90.91%), so 

indicating their great predictive power among the classifiers. Naïve Bayes (85.12%) and Lazy-K Star (85.95%) had the 

lowest accuracy, therefore indicating less performance in identifying software flaws in classifying. Indicating modest 

agreement with the true classification labels, the Kappa Statistic—which gauges agreement beyond chance—was 

highest for Lazy-IBK (0.3042) and Naïve Bayes (0.2331). With SMO having the lowest MAE (0.0826) and Decision 

Stump having the highest RAE (100.0%), the error metrics (MAE, RMSE, RAE, RRSE) underline even more 
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performance variances in their predictions. While Decision Stump and Naïve Bayes show higher error rates and are 

therefore less appropriate for exact defect identification, the results imply that SMO and Lazy-IBK are the most reliable 

classifiers for defect prediction. 

Table 4.2: Performance Evaluation of Different Classifiers on the AR1 Dataset 

Using 10-Fold Cross-Validation (TP, FP Rate, Precision, F-Measure, Recall, and AUC) 

Classifier TP Rate 
FP 

Rate 
Precision Recall F-Measure 

ROC Area 

(AUC) 

Lazy-IBK 0.909 0.62 0.904 0.909 0.907 0.776 

Lazy-K Star 0.86 0.829 0.866 0.86 0.863 0.729 

SMO 0.917 0.926 0.856 0.917 0.886 0.496 

Decision Stump 0.909 0.927 0.856 0.909 0.882 0.549 

J48 0.893 0.826 0.874 0.893 0.883 0.545 

Naive Bayes 0.851 0.523 0.899 0.851 0.871 0.685 

Using 10-fold cross-validation, the performance measures of several machine learning classifiers applied to the AR1 

dataset for software defect prediction are presented in table 4.2. True Positive Rate (TP Rate), False Positive Rate (FP 

Rate), Precision, Recall, F-Measure, Receiver Operating Characteristic (ROC) Area (AUC) guides evaluation of the 

classifiers. Together, these measures reveal how well the classifiers minimise false positives and correctly identify faulty 

and non-defective software modules. 

With a TP Rate (0.917), SMO among the classifiers shows great capacity to accurately identify faulty modules. 

Additionally displaying high TP rates were Lazy-IBK and Decision Stump (both 0.909). While SMO and Decision 

Stump showed the highest FP Rates (0.926 and 0.927, respectively), suggesting a greater tendency to misclassify non-

defective modules as defective, Naïve Bayes displayed the lowest FP Rate (0.523), indicating less false alarms. Naïve 

Bayes performed best (0.899), thus it generated less erroneous positive classifications in terms of Precision. Confirming 

their dependability in defect prediction, F-Measure—which strikes a mix between Precision and Recall—was highest 

for Lazy-IBK (0.907), followed by SMO (0.886) and J48 (0.883). Whereas SMO (0.496) and J48 (0.545) had the lowest 

AUC values, implying limited discriminative power, the AUC values, which indicate the classifiers' capacity to 

distinguish between defective and non-defective modules, were highest for Lazy-IBK (0.776) and Naïve Bayes (0.685). 

While SMO and Decision Stump, despite high TP Rates, suffer from higher false positive rates and lower AUC scores, 

so making them less dependable for defect classification; Lazy-IBK and Naïve Bayes emerge as the most balanced 

classifiers overall. 

4.2 Hypothesis Testing Results: 

H01: There is no significant impact of Machine Learning Classification Algorithms on software defect prediction. 

Ha1: There is significant impact of Machine Learning Classification Algorithms on software defect prediction. 

Table 4.3: H1: Hypothesis Testing Result (One-Sample Statistics) 

One-Sample Statistics 

 N Mean Std. Deviation Std. Error Mean 

Classification Algorithms: Performance 24 .8194 .12523 .02556 

Table 4.4: H1: Hypothesis Testing Result (One-Sample T-Test) 

One-Sample Test 

 

Test Value = 0 

t df Sig. (2-tailed) Mean Difference 

95% Confidence Interval of the Difference 

Lower Upper 

Classification 

Algorithms: 

Performance 

32.054 23 .000 .81942 .7665 .8723 
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Whether machine learning classification algorithms significantly affect software defect prediction was the aim of the 

hypothesis test. With a standard deviation of 0.12523 and a standard error mean of 0.02556 the One-Sample Statistics 

table displays that the mean performance of classification algorithms is 0.8194. These values show that, with some 

variation, the classification algorithms show good performance generally. The strong departure from the null hypothesis 

is suggested by the One- Sample Test results, which also show a t-value of 32.054 with 23 degrees of freedom (df). The 

results are statistically significant since the p-value (0.000) is much less than the accepted criterion of 0.05. Furthermore, 

the 95% confidence interval (0.7665, 0.8723) excludes zero, so underlining the dependability of the results. The p-value 

is less than 0.05 thus we reject the null hypothesis (H01) and embrace the alternative hypothesis (Ha1). This underlines 

how statistically significantly Machine Learning Classification Algorithms affect software defect prediction. The 

findings imply that the accuracy and efficiency of software defect prediction models are much influenced by the choice 

of classification technique. These results underline the need of choosing suitable machine learning methods to increase 

software quality and defect detection enhancement. 

H02: There is no significant difference between various classification machine learning algorithms used for software 

defect prediction. 

Ha2: There is significant difference between various classification machine learning algorithms used for software defect 

prediction. 

Table 4.5: Classification Algorithms and Level of Impact: Cross Tabulation 

Classification Algorithms and Level of Impact 

 

Level of Impact 

Total High Low Very High Very Low 

Classification Algorithms Decision Stump 4 0 2 2 8 

J48 6 0 0 2 8 

Lazy-IBK 0 2 6 0 8 

Lazy-K Star 6 2 0 0 8 

Naïve Bayes 4 2 2 0 8 

SMO 4 0 2 2 8 

Total 24 6 12 6 48 

Table 4.6: Chi-Square Test Results (H2) 

Chi-Square Tests 

 Value df Asymptotic Significance (2-sided) 

Pearson Chi-Square 30.000a 15 .012 

Likelihood Ratio 39.550 15 .001 

N of Valid Cases 48   

a. 24 cells (100.0%) have expected count less than 5. The minimum expected count is 1.00. 

Various Machine Learning Classification Algorithms applied for software defect prediction were investigated using the 

Chi-Square test to find any appreciable variations. The degree of impact of the classification algorithms—High, Low, 

Very High, and Very Low—classified them. The contingency table indicates that some algorithms, such J48 and Lazy-

K Star, tend to show a higher impact while others like Lazy-IBK and Decision Stump have a more varied distribution. 

This indicates the distribution of classification algorithms across many impact levels. The results of the Chi-Square Tests 

show an asymptotic significance (p-value) of 0.012 and a Pearson Chi-Square value of 30.000 with 15 degrees of 

freedom (df). Likewise, both of which are below the 0.05 significance threshold, the Likelihood Ratio test finds a value 

of 39.550 with a p-value of 0.001. We reject the null hypothesis (H02) and embrace the alternative hypothesis (Ha2) 

since the p-value is less than 0.05, so verifying the statistically significant variation among the several classification 

machine learning algorithms applied for software defect prediction. This implies that not all classifiers perform equally 

in defect detection and that several algorithms affect defect prediction performance at different degrees. The outcomes 

underline the need of choosing suitable classification techniques depending on the particular need of the defect 

prediction model. Future studies might investigate hybrid models and ensemble learning methods to improve robustness 

and predictive accuracy. 
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5. CONCLUSION 

Using the AR1 dataset and 10-fold cross-validation, the study assessed how well different machine learning classifiers 

performed in predicting software defects. Key performance metrics such as True Positive Rate (TP Rate), False Positive 

Rate (FP Rate), Precision, Recall, F-Measure, and ROC Area (AUC) were used to evaluate the classifiers. The findings 

show that, with a TP Rate of 0.909 and an AUC of 0.776, the Lazy-IBK classifier performed best across the majority of 

metrics. In a similar vein, Naïve Bayes had a comparatively lower ROC Area than SMO and Decision Stump, which 

showed competitive performance. The fact that both null hypotheses (H01 and H02) were rejected demonstrates that 

machine learning classification algorithms have a substantial influence on software defect prediction and that their 

efficacy varies noticeably. These results emphasise how crucial it is to choose the right classifier depending on the 

performance requirements and dataset properties. To further improve defect prediction accuracy and optimise classifier 

selection strategies for practical software projects, future research can investigate hybrid models. 
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