

www.ijprems.com

editor@ijprems.com

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

(Int Peer Reviewed Journal)

Vol. 05, Issue 03, March 2025, pp : 796-801

e-ISSN :

2583-1062

Impact

Factor :

7.001

@International Journal Of Progressive Research In Engineering Management And Science Page | 796

INTELLIGENT SOFTWARE DEFECT PREDICTION USING MACHINE

LEARNING CLASSIFICATION ALGORITHMS

Manuj Joshi1
1Assistant Professor, FCI, Sir Padampat Singhania University, Udaipur, India.

manujjoshi@gmail.com

DOI: https://www.doi.org/10.58257/IJPREMS39007

ABSTRACT

Software defect prediction (SDP) is a critical task in software engineering, aimed at improving software quality by

identifying defective modules before deployment. Conventional defect detection techniques are frequently laborious

and prone to human error. Automated defect prediction models have drawn a lot of attention as a result of improvements

in Machine Learning (ML) classification algorithms. These models increase the effectiveness of defect management by

using software metrics and historical defect data to categorise software modules as either defective or non-defective.In

this study, we compare different classification models, such as Lazy-IBK, Lazy-K Star, SMO, Decision Stump, J48, and

Naïve Bayes, and measure the effect of ML classification algorithms on software defect prediction. Key performance

metrics like accuracy, Kappa statistic, mean absolute error (MAE), root mean squared error (RMSE), relative absolute

error (RAE), and root relative squared error (RRSE) are used in the study to assess these algorithms. The study develops

and tests two hypotheses in order to validate the results: (H01) that ML classification algorithms have no discernible

effect on defect prediction, and (H02) that there are no discernible differences between different classification models.

The experimental findings show differences in error rates and predictive accuracy, emphasising the superiority of some

models over others in the classification of software defects. Insights into the top-performing machine learning classifiers

for defect prediction are provided by the research findings, which benefit software engineering by empowering

developers to choose effective models for defect detection. To further increase prediction accuracy and dependability,

future studies can investigate the combination of deep learning methods and hybrid models.

Keywords: Machine Learning, Software Defect Prediction, Deep Learning

1. INTRODUCTION

The Software defect prediction (SDP) plays a crucial role in enhancing software quality and reducing maintenance costs

by identifying potential defective modules early in the software development lifecycle. Manual code reviews, rule-based

methods, and static analysis are the mainstays of traditional defect prediction approaches, which are frequently

laborious, prone to errors, and ineffective for large-scale software systems. The increasing complexity of modern

software demands intelligent and automated methods to detect defects effectively.As machine learning (ML) has

advanced, classification algorithms have become increasingly effective tools for anticipating software flaws. ML-based

models leverage historical defect data and software metrics to learn patterns associated with defective and non-defective

code segments. New software components can then be categorised by these models according to how likely they are to

have flaws. In software defect prediction, well-known classification algorithms like Decision Trees, Random Forest,

Support Vector Machines (SVM), Naïve Bayes, K-Nearest Neighbours (KNN), and Deep Learning models have shown

encouraging results.

Several variables, such as feature selection, model optimisation, and training data quality, affect how well defect

prediction models work. Enhancing prediction accuracy requires the use of feature engineering techniques, such as static

code attributes (e.g., lines of code, cyclomatic complexity, code churn) and process metrics (e.g., historical defect

density, change frequency). In order to improve the generalisability and resilience of defect prediction models, hybrid

and ensemble learning approaches have also been investigated. This study aims to explore and compare different

machine learning classification algorithms for intelligent software defect prediction. This study offers insights into the

best methods for defect detection by assessing their performance using open-source repositories and standard software

defect datasets like NASA PROMISE. By facilitating proactive defect management techniques, the findings aid in the

creation of software systems that are more dependable and effective.

2. LITERATURE REVIEW

Albattah, W., & Alzahrani, M. (2024) Software bug prediction helps identify defects early in the development process,

reducing costs and improving reliability. Using a dataset of 60 software metrics from five public bug datasets, this study

assesses eight machine learning and deep learning models. Cohesion, coupling, complexity, documentation inheritance,

and size metrics are among the important quality indicators that are used for classification. Accuracy, weighted F1 score,

binary F1 score, and macro F1 score are used to gauge performance. With an accuracy of 0.87, the results demonstrate

www.ijprems.com

editor@ijprems.com

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

(Int Peer Reviewed Journal)

Vol. 05, Issue 03, March 2025, pp : 796-801

e-ISSN :

2583-1062

Impact

Factor :

7.001

@International Journal Of Progressive Research In Engineering Management And Science Page | 797

that the LSTM deep learning model performs better than the others. Software maintainability research trends and

challenges were summarised in a systematic literature review on the topic by Malhotra and Chug (2016). The study

identifies the primary determinants of maintainability, such as software metrics, design patterns, and code complexity.

The authors talk about different statistical and machine learning models that are used to predict maintainability and

propose that new methods like search-based optimisation and deep learning could improve maintainability evaluation.

This study offers a solid starting point for future research on automated software quality assessment. The issue of self-

admitted technical debt (SATD) in open-source software projects was investigated by Huang et al. (2018). The authors

created models that automatically detect situations in which developers acknowledge technical debt in code comments

by utilising text mining techniques. According to their findings, SATD can have a major effect on the maintainability

and quality of software. Additionally, by identifying latent software issues before they become more serious, natural

language processing (NLP) techniques can improve software quality prediction models.

A data-efficient learning method for forecasting software performance in configurable systems was presented by Guo

et al. (2018). By introducing methods that reduce the need for comprehensive performance measurements, the authors

increased the efficiency of software optimisation. They applied machine learning models to predict system behavior

with limited training data, emphasizing the importance of feature selection and sampling strategies. In addition to

offering insights into creating more flexible machine learning models for software defect prediction, the study advances

the field of performance-aware software engineering. A thorough overview of search-based model-driven engineering

(SBMDE), which incorporates search-based optimisation methods into software modelling and development, is

provided in this paper. The authors examine several metaheuristic algorithms for software model optimisation, including

simulated annealing and genetic algorithms. In addition to highlighting how artificial intelligence (AI) can improve

software design choices, the paper makes the case that machine learning could improve software defect prediction and

maintainability even more.

The use of machine learning algorithms to forecast software module fault-proneness was investigated by Gondra (2008).

The study evaluates the efficacy of several classification models, such as support vector machines (SVMs), decision

trees, and neural networks, in identifying software flaws. The findings show that feature selection and ensemble learning

strategies increase the accuracy of fault prediction. This research is particularly relevant for developing automated defect

prediction systems.

A neural attention model was presented by Iyer et al. (2016) in order to automatically produce source code summaries.

To produce human-readable explanations of code functionality, the authors used deep learning techniques, specifically

recurrent neural networks (RNNs) with attention mechanisms. By strengthening code comprehension and review

procedures, AI-based techniques can increase software maintainability and defect prediction, according to this research,

which also helps automate software documentation.

In order to forecast software maintainability in object-oriented applications, Mishra and Sharma (2015) investigated

fuzzy systems based on adaptive networks. Their method creates a clear, understandable model for software quality

evaluation by fusing machine learning and fuzzy logic. In assessing software maintainability, the study highlights the

significance of object-oriented metrics like inheritance depth and coupling. The findings imply that hybrid machine

learning techniques increase the accuracy of maintainability predictions.

Ahmed and Al-Jamimi (2013) presented a fuzzy-based machine learning model for predicting software maintainability.

To create a prediction system that is easier to understand and interpret, the study combines fuzzy logic with decision

trees and neural networks. The authors contend that fuzzy-based methods are better suited for predicting software

maintainability because traditional statistical models are less adaptable when dealing with ambiguous and imprecise

data. This study offers important insights into fuzzy logic applications in predictive modelling, despite its primary focus

on the machining process. The authors talk about how machine learning and fuzzy logic can be combined to improve

software quality and defect prediction. According to the study, fuzzy systems are a promising method for software

engineering applications because they can effectively handle uncertainty and imprecise software metrics.

A multi-objective optimisation model was put forth by Chhabra (2017) in an effort to enhance object-oriented package

structure. To improve software modularity and maintainability, the study makes use of optimisation algorithms and

weighted class connections. According to the study's findings, software architecture can be optimised through search-

based and machine learning approaches, which lower maintenance costs and defect rates. Three empirical studies on the

use of ensemble learning techniques to predict software maintainability were carried out by Elish et al. (2015). When

compared to conventional machine learning models, the study finds that bagging, boosting, and stacking ensembles

greatly increase prediction accuracy and robustness. The study backs up the claim that software defect prediction models

can be improved through ensemble learning.

www.ijprems.com

editor@ijprems.com

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

(Int Peer Reviewed Journal)

Vol. 05, Issue 03, March 2025, pp : 796-801

e-ISSN :

2583-1062

Impact

Factor :

7.001

@International Journal Of Progressive Research In Engineering Management And Science Page | 798

3. RESEARCH METHODOLOGY

In software defect prediction (SDP), the AR1 dataset is a generally used benchmark dataset for assessing the

performance of machine learning classification algorithms. Software metrics and defect labels make up it and enable

the identification of trends separating faulty from non-defective software modules. The dataset includes several

attributes taken from process metrics and static code elements taken from software source code. These characteristics

are fundamental markers of software quality and help to train predictive models to label software modules as either non-

defective or defective.

Structural characteristics of the code are measured in the dataset by means of code complexity metrics including Lines

of Code (LOC), Cyclomatic Complexity (CC), and Halstead Metrics). Process metrics like change count, defect density,

and historical modification frequency—which help to show how software components have evolved over time—also

are included. Target variable is the defect label—binary classification: defective or non-defective. Usually employing

10-fold cross-valuation, the dataset guarantees a fair assessment of several machine learning classifiers. This allows a

strong comparison of models depending on performance criteria including True Positive (TP), False Positive (FP) rate,

Precision, Recall, F-Measure, and Area Under the Curve (AUC).

Objectives:

1. To measure the impact of Machine Learning Classification Algorithms on software defect prediction.

2. Comparative analysis of various classification machine learning algorithms used for software defect prediction.

Hypotheses:

Based on the above objectives following hypotheses was being framed:

H01: There is no significant impact of Machine Learning Classification Algorithms on software defect prediction.

Ha1: There is significant impact of Machine Learning Classification Algorithms on software defect prediction.

H02: There is no significant difference between various classification machine learning algorithms used for software

defect prediction.

Ha2: There is significant difference between various classification machine learning algorithms used for software defect

prediction.

4. RESULTS AND DISCUSSION

4.1 Comparative Analysis of Different Machine Learning:

The Table 4.1 evaluates several machine learning classifiers for software defect prediction using 10-fold cross-valuation

on the AR1 dataset. Multiple performance criteria—Kappa Statistic, Accuracy, Mean Absolute Error (MAE), Root Mean

Squared Error (RMSE), Relative Absolute Error (RAE), Root Relative Squared Error (RRSE)—are used to evaluate the

classifiers. The chosen models show differences in classification performance, according the results.

Table 4.1: Performance Evaluation of Different Classifiers on the AR1 Dataset

Using 10-Fold Cross-Validation (Kappa Statistic, Accuracy, MAE, RMSE, RAE, RRSE)

Classifier
Kappa

Statistic

Correctly

Classified

Instances

(Accuracy)

Mean

Absolute

Error

Root

Mean

Squared

Error

Relative

Absolute

Error (%)

Root

Relative

Squared

Error (%)

Lazy-IBK 0.3042 110 (90.90 %) 0.0964 0.29 66.76 113.74

Lazy-K Star 0.0293 104 (85.95%) 0.1421 0.3681 98.46 140.08

SMO -0.0151 111 (91.73%) 0.0826 0.2875 57.25 109.40

Decision Stump -0.0278 110 (90.91%) 0.1444 0.2995 100.0 113.97

J48 0.0785 109 (90.08%) 0.127 0.2997 87.98 114.05

Naïve Bayes 0.2331 103 (85.12%) 0.1518 0.3734 105.15 142.09

With the highest accuracy (91.73%), SMO followed closely by Lazy-IBK (90.90%), and Decision Stump (90.91%), so

indicating their great predictive power among the classifiers. Naïve Bayes (85.12%) and Lazy-K Star (85.95%) had the

lowest accuracy, therefore indicating less performance in identifying software flaws in classifying. Indicating modest

agreement with the true classification labels, the Kappa Statistic—which gauges agreement beyond chance—was

highest for Lazy-IBK (0.3042) and Naïve Bayes (0.2331). With SMO having the lowest MAE (0.0826) and Decision

Stump having the highest RAE (100.0%), the error metrics (MAE, RMSE, RAE, RRSE) underline even more

www.ijprems.com

editor@ijprems.com

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

(Int Peer Reviewed Journal)

Vol. 05, Issue 03, March 2025, pp : 796-801

e-ISSN :

2583-1062

Impact

Factor :

7.001

@International Journal Of Progressive Research In Engineering Management And Science Page | 799

performance variances in their predictions. While Decision Stump and Naïve Bayes show higher error rates and are

therefore less appropriate for exact defect identification, the results imply that SMO and Lazy-IBK are the most reliable

classifiers for defect prediction.

Table 4.2: Performance Evaluation of Different Classifiers on the AR1 Dataset

Using 10-Fold Cross-Validation (TP, FP Rate, Precision, F-Measure, Recall, and AUC)

Classifier TP Rate
FP

Rate
Precision Recall F-Measure

ROC Area

(AUC)

Lazy-IBK 0.909 0.62 0.904 0.909 0.907 0.776

Lazy-K Star 0.86 0.829 0.866 0.86 0.863 0.729

SMO 0.917 0.926 0.856 0.917 0.886 0.496

Decision Stump 0.909 0.927 0.856 0.909 0.882 0.549

J48 0.893 0.826 0.874 0.893 0.883 0.545

Naive Bayes 0.851 0.523 0.899 0.851 0.871 0.685

Using 10-fold cross-validation, the performance measures of several machine learning classifiers applied to the AR1

dataset for software defect prediction are presented in table 4.2. True Positive Rate (TP Rate), False Positive Rate (FP

Rate), Precision, Recall, F-Measure, Receiver Operating Characteristic (ROC) Area (AUC) guides evaluation of the

classifiers. Together, these measures reveal how well the classifiers minimise false positives and correctly identify faulty

and non-defective software modules.

With a TP Rate (0.917), SMO among the classifiers shows great capacity to accurately identify faulty modules.

Additionally displaying high TP rates were Lazy-IBK and Decision Stump (both 0.909). While SMO and Decision

Stump showed the highest FP Rates (0.926 and 0.927, respectively), suggesting a greater tendency to misclassify non-

defective modules as defective, Naïve Bayes displayed the lowest FP Rate (0.523), indicating less false alarms. Naïve

Bayes performed best (0.899), thus it generated less erroneous positive classifications in terms of Precision. Confirming

their dependability in defect prediction, F-Measure—which strikes a mix between Precision and Recall—was highest

for Lazy-IBK (0.907), followed by SMO (0.886) and J48 (0.883). Whereas SMO (0.496) and J48 (0.545) had the lowest

AUC values, implying limited discriminative power, the AUC values, which indicate the classifiers' capacity to

distinguish between defective and non-defective modules, were highest for Lazy-IBK (0.776) and Naïve Bayes (0.685).

While SMO and Decision Stump, despite high TP Rates, suffer from higher false positive rates and lower AUC scores,

so making them less dependable for defect classification; Lazy-IBK and Naïve Bayes emerge as the most balanced

classifiers overall.

4.2 Hypothesis Testing Results:

H01: There is no significant impact of Machine Learning Classification Algorithms on software defect prediction.

Ha1: There is significant impact of Machine Learning Classification Algorithms on software defect prediction.

Table 4.3: H1: Hypothesis Testing Result (One-Sample Statistics)

One-Sample Statistics

 N Mean Std. Deviation Std. Error Mean

Classification Algorithms: Performance 24 .8194 .12523 .02556

Table 4.4: H1: Hypothesis Testing Result (One-Sample T-Test)

One-Sample Test

Test Value = 0

t df Sig. (2-tailed) Mean Difference

95% Confidence Interval of the Difference

Lower Upper

Classification

Algorithms:

Performance

32.054 23 .000 .81942 .7665 .8723

www.ijprems.com

editor@ijprems.com

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

(Int Peer Reviewed Journal)

Vol. 05, Issue 03, March 2025, pp : 796-801

e-ISSN :

2583-1062

Impact

Factor :

7.001

@International Journal Of Progressive Research In Engineering Management And Science Page | 800

Whether machine learning classification algorithms significantly affect software defect prediction was the aim of the

hypothesis test. With a standard deviation of 0.12523 and a standard error mean of 0.02556 the One-Sample Statistics

table displays that the mean performance of classification algorithms is 0.8194. These values show that, with some

variation, the classification algorithms show good performance generally. The strong departure from the null hypothesis

is suggested by the One- Sample Test results, which also show a t-value of 32.054 with 23 degrees of freedom (df). The

results are statistically significant since the p-value (0.000) is much less than the accepted criterion of 0.05. Furthermore,

the 95% confidence interval (0.7665, 0.8723) excludes zero, so underlining the dependability of the results. The p-value

is less than 0.05 thus we reject the null hypothesis (H01) and embrace the alternative hypothesis (Ha1). This underlines

how statistically significantly Machine Learning Classification Algorithms affect software defect prediction. The

findings imply that the accuracy and efficiency of software defect prediction models are much influenced by the choice

of classification technique. These results underline the need of choosing suitable machine learning methods to increase

software quality and defect detection enhancement.

H02: There is no significant difference between various classification machine learning algorithms used for software

defect prediction.

Ha2: There is significant difference between various classification machine learning algorithms used for software defect

prediction.

Table 4.5: Classification Algorithms and Level of Impact: Cross Tabulation

Classification Algorithms and Level of Impact

Level of Impact

Total High Low Very High Very Low

Classification Algorithms Decision Stump 4 0 2 2 8

J48 6 0 0 2 8

Lazy-IBK 0 2 6 0 8

Lazy-K Star 6 2 0 0 8

Naïve Bayes 4 2 2 0 8

SMO 4 0 2 2 8

Total 24 6 12 6 48

Table 4.6: Chi-Square Test Results (H2)

Chi-Square Tests

 Value df Asymptotic Significance (2-sided)

Pearson Chi-Square 30.000a 15 .012

Likelihood Ratio 39.550 15 .001

N of Valid Cases 48

a. 24 cells (100.0%) have expected count less than 5. The minimum expected count is 1.00.

Various Machine Learning Classification Algorithms applied for software defect prediction were investigated using the

Chi-Square test to find any appreciable variations. The degree of impact of the classification algorithms—High, Low,

Very High, and Very Low—classified them. The contingency table indicates that some algorithms, such J48 and Lazy-

K Star, tend to show a higher impact while others like Lazy-IBK and Decision Stump have a more varied distribution.

This indicates the distribution of classification algorithms across many impact levels. The results of the Chi-Square Tests

show an asymptotic significance (p-value) of 0.012 and a Pearson Chi-Square value of 30.000 with 15 degrees of

freedom (df). Likewise, both of which are below the 0.05 significance threshold, the Likelihood Ratio test finds a value

of 39.550 with a p-value of 0.001. We reject the null hypothesis (H02) and embrace the alternative hypothesis (Ha2)

since the p-value is less than 0.05, so verifying the statistically significant variation among the several classification

machine learning algorithms applied for software defect prediction. This implies that not all classifiers perform equally

in defect detection and that several algorithms affect defect prediction performance at different degrees. The outcomes

underline the need of choosing suitable classification techniques depending on the particular need of the defect

prediction model. Future studies might investigate hybrid models and ensemble learning methods to improve robustness

and predictive accuracy.

www.ijprems.com

editor@ijprems.com

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

(Int Peer Reviewed Journal)

Vol. 05, Issue 03, March 2025, pp : 796-801

e-ISSN :

2583-1062

Impact

Factor :

7.001

@International Journal Of Progressive Research In Engineering Management And Science Page | 801

5. CONCLUSION

Using the AR1 dataset and 10-fold cross-validation, the study assessed how well different machine learning classifiers

performed in predicting software defects. Key performance metrics such as True Positive Rate (TP Rate), False Positive

Rate (FP Rate), Precision, Recall, F-Measure, and ROC Area (AUC) were used to evaluate the classifiers. The findings

show that, with a TP Rate of 0.909 and an AUC of 0.776, the Lazy-IBK classifier performed best across the majority of

metrics. In a similar vein, Naïve Bayes had a comparatively lower ROC Area than SMO and Decision Stump, which

showed competitive performance. The fact that both null hypotheses (H01 and H02) were rejected demonstrates that

machine learning classification algorithms have a substantial influence on software defect prediction and that their

efficacy varies noticeably. These results emphasise how crucial it is to choose the right classifier depending on the

performance requirements and dataset properties. To further improve defect prediction accuracy and optimise classifier

selection strategies for practical software projects, future research can investigate hybrid models.

6. REFERENCE

[1] Albattah, W., & Alzahrani, M. (2024). Software Defect Prediction Based on Machine Learning and Deep

Learning Techniques: An Empirical Approach. AI, 5(4), 1743-1758. https://doi.org/10.3390/ai5040086.

[2] Boussaïd, I., Siarry, P., & Ahmed-Nacer, M. (2017). A survey on search-based model-driven engineering.

Automated Software Engineering, 24(2), 233–294.

[3] Chhabra, J. K. (2017). Improving package structure of object-oriented software using multi-objective

optimization and weighted class connections. Journal of King Saud University - Computer and Information

Sciences, 29(3), 349–364.

[4] Elish, M. O., Aljamaan, H., & Ahmad, I. (2015). Three empirical studies on predicting software maintainability

using ensemble methods. Soft Computing, 19(9), 2511–2524.

[5] Gondra, I. (2008). Applying machine learning to software fault-proneness prediction. Journal of Systems and

Software, 81(2), 186–195.

[6] Guo, J., Yang, D., Siegmund, N., Apel, S., Sarkar, A., Valov, P., Czarnecki, K., Wasowski, A., & Yu, H. (2018).

Data-efficient performance learning for configurable systems. Empirical Software Engineering, 23(4), 1826–

1867.

[7] Huang, Q., Shihab, E., Xia, X., Lo, D., & Li, S. (2018). Identifying self-admitted technical debt in open source

projects using text mining. Empirical Software Engineering, 23(1), 418–451.

[8] Iyer, S., Konstas, I., Cheung, A., & Zettlemoyer, L. (2016). Summarizing source code using a neural attention

model. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (pp. 2073–

2083). Berlin, Germany: Association for Computational Linguistics.

[9] Malhotra, R., & Chug, A. (2016). Software maintainability: Systematic literature review and current trends.

International Journal of Software Engineering and Knowledge Engineering, 26(9-10), 1221–1253.

[10] Mishra, S., & Sharma, A. (2015). Maintainability prediction of object-oriented software by using adaptive

network-based fuzzy system technique. International Journal of Computer Applications, 119(19), 24–27.

[11] Mohd Adnan, M., Sarkheyli, A., Mohd Zain, A., & Haron, H. (2015). Fuzzy logic for modeling machining

process: A review. Artificial Intelligence Review, 43(3), 345–379.

[12] Ahmed, M. A., & Al-Jamimi, H. A. (2013). Machine learning approaches for predicting software maintainability:

A fuzzy-based transparent model. IET Software, 7(6), 317–326.

