

www.ijprems.com editor@ijprems.com

INTERNATIONAL JOURNAL OF PROGRESSIVE
RESEARCH IN ENGINEERING MANAGEMENT
AND SCIENCE (IJPREMS)
(Int Peer Reviewed Journal)e-ISSN :
2583-1062Vol. 05, Issue 03, March 2025, pp : 657-6637.001

ANALYSIS AND DESIGN OF (G+5) COMMERCIAL BUILDING USING ETABS

Nasuku Reddy Sreekanth¹, Dr. L. Thimmaiah²

¹M. Tech Student, Department of Civil Engineering, Viswam Engineering College, Madanapalli,India. ²Professor, Department of Civil Engineering, Viswam Engineering College, Madanapalli, India.

ABSTRACT

Structural analysis is a field that studies how structures behave or forecasts how various structural elements will react to loads. Every single structure will be exposed to one or more sets of loads, as well as different types of loads. Dead load, live load, earthquake load, and wind load are typically considered.

The software ETABS (Extended Three-Dimensional Analysis of Building System) is specifically designed for building analysis and design. It is integrated with all of the main analysis engines, including static, dynamic, linear, and non-linear.

Our project is titled "Analysis and Design of Commercial Buildings Using ETABS Software".

This study considers a multi-story skyscraper. Analysis is performed using the static approach, and design is done in accordance with IS 456:2000 requirements. Additionally, an attempt was made to design the structural elements manually. AutoCAD is used to create drawings. Revit Architecture is used to create three-dimensional models.

Key Words: Auto Cad, ETABS, Revit, bending moment, Shear force, IS codes,

1. INTRODUCTION

Commercial buildings are those that serve a commercial purpose. Commercial structures include office buildings, retail shops, and warehouses, among others. Commercial property, which also includes multi-family structures like apartment buildings, is a little different from this. This is because commercial buildings are the sites of business, whereas commercial property generates revenue for its owners without necessarily being the site of commerce. In some situations, multi-use buildings with a variety of spaces—such as residences and a retail area—can nevertheless be classified as commercial.

INTRODUCTION TO ETABS

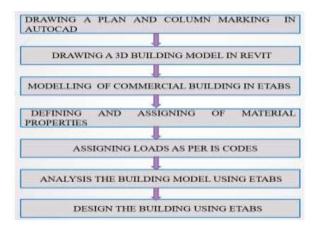
ETABS is an analysis and design-based program that is extremely valuable for structural engineers. When high-rise structures are developed using ETABS, the most cost-effective design is obtained. It is the most widely used structural engineer's software program for model production, analysis, and multilateral design. It features an intuitive user-friendly GUI, visualization tools, sophisticated analysis and design capabilities, and seamless connection with a variety of other modeling and design software applications.

2. LITERATURE REVIEW

Chandrasekhar and Rajasekhar (2015):

The multi-story skyscraper was analyzed and designed using ETABS software. For this study, a G+5 story building subjected to the lateral loading effects of earthquakes and wind was taken into consideration. ETABS was used for analysis.

They have also taken into account the likelihood that a fire would spread and the significance of using fireproof materials that meet the highest performance and dependability standards. They recommended that ETABS software, which is highly inventive and simple for high-rise buildings, be used extensively to cut down on the amount of time needed for design.


Balaji and Salvarsan M.E (2016):

ETABS was used to analyze and design a multi-story structure in both static and dynamic loading conditions. In this work, ETABS was used to study the earthquake loads of a G+13- story residential building.

They conducted both static and dynamic analyses, assuming that material properties were linear. Severe seismic zones were taken into account when doing the non-linear analysis, and type II soil conditions were used to evaluate the behavior. Plotting and analysis were done on various outcomes, such as displacements and base shear.

editor@ijprems.com	Vol. 05, Issue 03, March 2025, pp : 657-663	7.001
www.ijprems.com	(Int Peer Reviewed Journal)	Factor :
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	AND SCIENCE (IJPREMS)	Impact
IJPREMS	RESEARCH IN ENGINEERING MANAGEMENT	2583-1062
44	INTERNATIONAL JOURNAL OF PROGRESSIVE	e-ISSN:

#### 3. METHODOLOGY



#### FIG 3.1: Methodology Flowchart

#### SOFTWARE USED

The following software are used for the design of G 4 Domestic structure in this design.

- 1. AUTOCAD Software.
- 2. ETABS Software.
- 3. Revit Architecture.

#### 4. PLAN OF THE BUILDING

The material is used for construction is reinforced concrete with M-30 grade concrete and Fe- 415 grade of steel. Type of the project = Structural Analysis Design of Commercial Building.

Building Type = Commercial Building-shopping mall

Location = Hyderabad, Telangana.

Type of Slab = Two-way slab

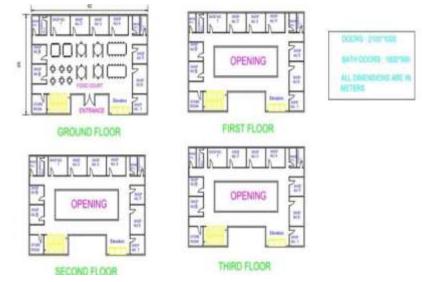
Total Built-up Area = 1050 sq.-m. (assumed 42m x 25m)

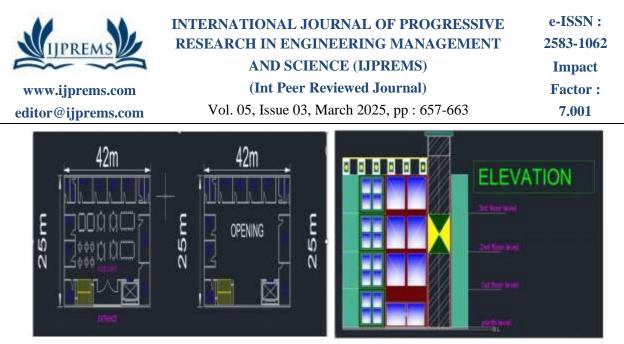
Method of Analysis = Static Analysis (Linear)

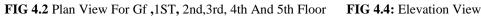
#### Material Properties of the structure:

Beam Sizes = 300mm x 500mm

Column Size = 300mm x 500mm


Slab Thickness = 200 mm


Number of stories = G+3


Height = 15m Live Load =  $5 \text{ kN/m}^2$  and  $1.5 \text{ kN/m}^2$  (as per IS 875 part II2015)

Dead Load = Self -weight of members (as per IS 875 part I-2015)

Seismic Load = Calculated as per IS 1893(part I) - 2016







# 5. 3D MODEL IN REVIT

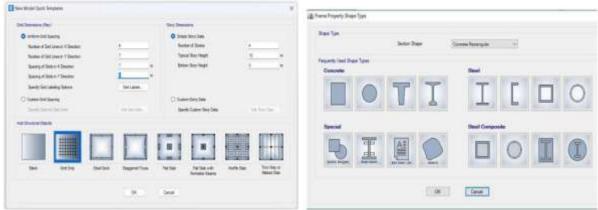


FIG 5.2: INSIDE VIEW -2

FIG 5.1: FRONT VIEW

# 6. LOAD CALCULATIONS

#### 6.1 DEAD LOAD AND LIVE LOAD CALCULATIONS


1.Dead Load External wall = 0.3x3x20 = 18kn/m Internal wall = 0.15x3x20 = 9kn/m Load on slab = Self wt of slab=0.2x25 = 5kn/m² 2. Live load = 1.5kn/m² Floor finishing = 1kn/m² Unit wt of RCC = 25KN/M³ Self wt of slab = 5kn/m² **6.2 CALCULATION OF DESIGN WIND SPEED OF ALL STORY'S:** Story-1,2, 3, and 4 Design wind Speed (Vz) Vz=Vb x K1 x K2 x K3 x K4 m/s Vb=44m/s **6.3 SEISMIC ZONE CALCULATION DESIGN** Calculation of Horizontal Seismic Coefficient: For 4-story Building Along X=direction Base dimension along x – direction=42m Haight of Building H=16 5m Translational time pariod Ta=0.075 X h  $^{0.75}$ (Clause7

Height of Building H=16.5m Translational time period Ta= $0.075 \text{ X} \text{ h}^{0.75}$ (Clause7.6.2MRFbuilding) h = 16.5 Ta =  $0.075 \times \text{h}^{0.75}$  Ta = 0.775sec of Sa/gV aluefor0.77secis2.5 Horizontal Seismic Coefficient Ah=[(2/3 x z/2) x (Sa/g)]/(R/I) Z=0.10 R=5, I=1.0 Sa/G=2.5 Ah=0.025

@International Journal Of Progressive Research In Engineering Management And Science

	INTERNATIONAL JOURNAL OF PROGRESSIVE	e-ISSN:
IJPREMS	<b>RESEARCH IN ENGINEERING MANAGEMENT</b>	2583-1062
an ma	AND SCIENCE (IJPREMS)	Impact
www.ijprems.com	(Int Peer Reviewed Journal)	Factor :
editor@ijprems.com	Vol. 05, Issue 03, March 2025, pp : 657-663	7.001

# 7. ANALYSIS, DESIGN & MODELING USING ETABS-20



#### Fig 7.1 Grid Spacing



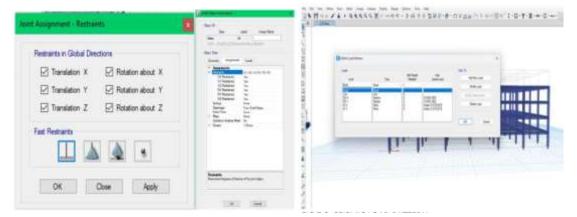
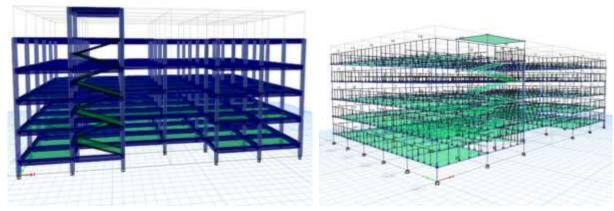




Fig 7.3 Support Selection

Fig 7.4 Load Selection

#### 7.2 Results



### Fig: 7.4 ASSIGNED PROPERTIES



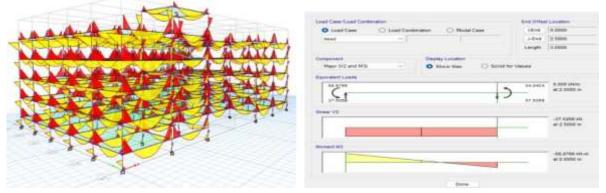



Fig:7.6 SHEAR FORCE AND BENDING MOMENT DIAGRAMS



www.ijprems.com

editor@ijprems.com

#### e-ISSN: **INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT** 2583-1062 **AND SCIENCE (IJPREMS)** Impact (Int Peer Reviewed Journal) **Factor**: 7.001

Vol. 05, Issue 03, March 2025, pp : 657-663

7.3 COLUMNS RESULT REPORT:

#### **ETABS** Concrete Frame Design

15 456:2000 + 15 13920:2016 Beam Section Design (Summary)



	the state of the s	and the second se		De	am Element	Details			the state of the state of the	
Lovel	Element	Unique Na	me Sect	ion ID	Combo ID	Station	1.00 1	ength (mm)	LLRF	Type
Story4 C3		4362	b-30	0*500	DCon92	0		3000	0.025	Ductile Frame
				5	ection Prope	ortion				
		b (mm) h (mm) br		br (mr	n) d. (m	) d. (mm) dat (1		iat (mm) data (mm		
		300	500	300	0	11997 of 2	50	50		
					Aaterial Prop	ortion				
	-	E _n (MPa) f _{ex} (MPa) Lt.Wt Factor (Unitless) f _r (MPa) f _{rs} (MPa)							(Pa)	
		27388.13	90		1		41	5 41	5	

Design Code	Parameters
Yo	¥1
1.5	1.15

#### **Factored Forces and Moments** Factored Factored Factored Factored M.,. т., Vu2 kN P_u kN kN-m kN-m -111.0781 0.1589 70.8671 646.0789

Design Moments, Mus & Mt								
Factored	Factored	Positive	Negative					
Moment	Mt	Moment	Moment					

kN-m	kN-m	kN-m	
0.2492	0	-111.3253	

Design Moment and Flexural Reinforcement for Moment, Mus & Tu									
	Design -Moment kN-m	Design +Moment kN-m	-Moment Rebar mm ²	+Moment Rebar mm²	Minimum Rebar mm²	Required Rebar mm ²			
Top (+2 Axis)	-111.3253		743	0	743	428			
Bottom (-2 Axis)		0	371	0	0	371			

Shear V.	Shear Vo	Shear Ve	Shear V _e	Rebar A _{sv} /s
kN	kN	kN	kN	mm ³ /m
70.9671	100.0714	54	103.048	332.53

Torsion Force and Torsion Reinforcement for Torsion, T₂ & Vuz

T _a V _a		Core b ₁	Core d ₁	Rebar A _{set} /s
kN-m kN		mm	mm	mm ² /m
0.1589	70.8671	220	420	0

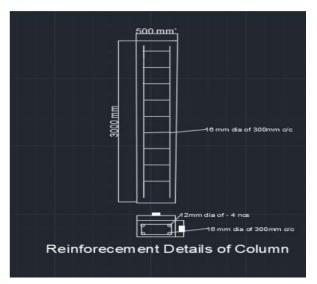
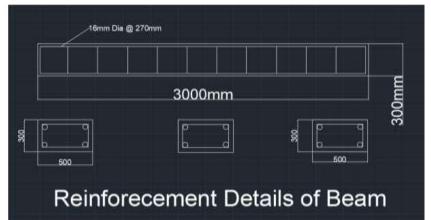



Fig: 7.7 REINFORCEMENT DETAILS FOR COLUMN

@International Journal Of Progressive Research In Engineering Management And Science



www.ijprems.com


editor@ijprems.com

# INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT AND SCIENCE (IJPREMS) (Int Peer Reviewed Journal)

e-ISSN : 2583-1062 Impact Factor : 7.001

Vol. 05, Issue 03, March 2025, pp : 657-663

7.4 BEAM RESULT REPORT



#### Fig 7.7 REINFORCEMENT DETAILES FOR BEAM

#### ETABS 2016 Concrete Frame Design

IS 456:2000 Column Section Design



evel	Element	Unique	Name	Section	on ID	Con	ibo ID	Station	Loc	Length (n	nm) LLF
TOF	C30	1	15	COLUMN	$300 \times 50$	0 .UD	Con23	256	10	3000	0.6
					lection I	Properties					
		his	nm)	h (mm)	dc (mr	Construction of the owner of the		Torsion) (	mm)	-	
			00	500	60		0.03.00.1	30		-	
										-	
						Properties					
	E _c (MP		fek (MPa)	1.1.	Wt Fact	tor (Unities	(#)	T _y (Mi		Tys (MPa	0
	27386.	13	30	_		1.		415		415	_
			Anial Co	and Bia	and bloom	nent Denin	n For D		510		
Desi	gn Pa	Design M.		esign M _{ut}	1	imum M ₂		inimum M		ebar Area	Rebar %
	N	kN-m	2	kN-m		kN-m		kN-m	3   "	mm ²	%
1199	9203	1.775		-25.9983	2	23.9984		25.9983		1200	0.8
		111111					10000				
				Axial Force	and the second se		and a local division of the				11.0000-000-0
		K Fact Unitles	10.1	ngth In 1m	itial Mor kN-m		Additi	kN-m	ent		n Moment N-m
	Dec dialog	12000-21	554 J 198		1465304		e se contra			25.9983	
	r Bend(M3)	0.77176		500			0			23.9984	
				She	ar Desig	n for Var,	Vus				
-		SI	near V _a	Shear 1	Ve	Shear V		Shear V		Rebar Arv	/s
		252	KN	kN		kN	S2	kN	8	mm²/m	
	Major, V ₄₁		1.7746	101.918	96	52,8002		70.1831		332.53	
_	Minor, V _{e3}		1.252	96.158	7	48.0004		63.0489		554.22	
						Charles Inc.					
			1			Check/Des	ign			-	
				t Shear	Shear			Shear	Joint		
			1	orce kN	V _{Top} kN	V _{ii} ki		Ve kN	Area cm ²	Rati	
	- Plates T	hanr 17	-		11.00.50	01	· · ·	100000			
		hear, Visz		N/A N/A	N/A N/A	N		N/A N/A	N/A N/A	N/A	
				1941	18.4	T4	2	18.4	TUP.	1004	
				(1.1) Bea	m/Colun	nn Capacit	y Ratio				
				Major 8	Ratio	Minor	Ratio				
				N/A	4	N	A				
						5.7					
			Addi	tional Mome	nt Redu	ction Facto	or k (15 :	39.7.1.1)			
		Ag	Asc	Puz		Pp		Pu	k		
		cm ²	cm ²	kN		kN		kN	Unitle	5-5	
		1500	14.3	2469.49	13	944.9647	1199	9.9203	0.8327	64	
							22220	100			
				Additional M				100 C 100 C 100 C	0.87		195125015
			Consider	Length Factor		Section	K	L/Depth Ratio		Depth imit	KL/Depth Exceeded
			Ma	Pactor	0	epth (mm)		1000	1 4		Evreeded

Yes Yes 0.833

500 300 3.859

12

No No

Major Bending (M₃) Minor Bending (M₂)

	INTERNATIONAL JOURNAL OF PROGRESSIVE	e-ISSN :
IJPREMS	<b>RESEARCH IN ENGINEERING MANAGEMENT</b>	2583-1062
an ma	AND SCIENCE (IJPREMS)	Impact
www.ijprems.com	(Int Peer Reviewed Journal)	Factor :
editor@ijprems.com	Vol. 05, Issue 03, March 2025, pp : 657-663	7.001

# 8. CONCLUSION

1. The primary focus of this project is the analysis and design of a multi-story commercial structure utilizing ETABS, accounting for all potential load combinations in accordance with IS Code. overcoming the design obstacles are explained conceptually.

2. Using ETABS software, the building's axial force, shear force, and bending moment were examined.

3. We have examined the 3D modelling and design of RCC commercial buildings using the Revit and ETABS software.

4. In addition, rectification in ETABS is as easy as changing the values at the location of the fault, with the results generated in the output.

#### 9. REFERENCES

- [1] IS: 875 (Part 1) 2015 for Dead Loads, Indian Standard Code of Practice for Design Loads (Other Than Earthquake) For Buildings and Structures, Bureau of Indian Stan- dards, Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002.
- [2] IS: 875 (Part 2) 2015 for Imposed Loads, Indian Standard Code of Practice for Design Loads (Other Than Earthquake) For Buildings and Structures, Bureau of Indian Standards, Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002.
- [3] IS: 875 (Part 3) 2015 for Wind Loads, Indian Standard Code of Practice for Design Loads (Other Than Earthquake) For Buildings and Structures, Bureau of Indian Stan- dards, Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002.
- [4] IS: 875 (Part 5) 2015 for Special Loads and Combinations, Indian Standard Code of Practice for Design Loads (Other Than Earthquake) For Buildings and Structures, Bu- reau of Indian Standards, Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002.
- [5] IS 1893 (Part 1)-2016, Indian Standard Criteria for Earthquake Resistant Design of Structures, (Part 1-General Provisions and Buildings), Bureau of Indian Standards, Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002.
- [6] IS 456-2000, Indian standard code of practice for plain and reinforced concrete (fourth revision), Bureau of Indian Standards, New Delhi, July 2000.
- [7] Varalakshmi V,G shivakumar and R S Sarma (2014) "Designed and d G+5 residential building by ETABS", International Conference on Advance in Engineering and Technology.
- [8] Chandrashekar and and Rajashekar (2015), "Analysis and Design of Multi Storied Building by Using ETABS Software", International journals of scientific and research vol.4: issue.7: ISSN no. 2277-8179.
- [9] Balaji and Selvarasan (2016), "Design and Analysis of multi-storeyed building under static and dynamic loading conditions using ETABS", International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 4, Issue 4.