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ABSTRACT 

Introduction: Tuberculosis remains a significant global health challenge, necessitating more efficient andaccurate 

diagnostic methods. 

Methods: This study evaluates the performance of various convolutional neural network (CNN) architectures— VGG16, 

VGG19, ResNet50, ResNet101, ResNet152, and Inception-ResNet-V2—in classifying chest X-ray (CXR) images as 

either normal or TB-positive. The data set comprised 4,200 CXR images, with 700labeled as TB-positive and 3,500 as 

normal. We also examined the impact of data augmentation on model performance and analyzed the training times and 

the number of parameters for each architecture. 

Results: Our results showed that VGG16 outperformed the other models across all evaluation metrics, achieving an 

accuracy of 99.4%, precision of 97.9%, recall of 98.6%, F1-score of 98.3%, and AUC-ROC of 98.25%. Surprisingly, 

data augmentation did not improve performance, suggesting that the original dataset’s diversity was sufficient. 

Furthermore, models with large numbers of parameters, such as ResNet152 and Inception- ResNet-V2, required longer 

training times without yielding proportionally better performance. 

Discussion: These findings highlight the importance of selecting the appropriate model architecture based on task-

specific requirements. While more complex models with larger parameter counts may seem advantageous, they do not 

necessarily offer superior performance and often come with increased computational costs. 

Conclusion: The study demonstrates the potential of simpler models such as VGG16 to effectively diagnose TB from 

CXR images, providing a balance between performance and computational efficiency. This insight can guide future 

research and practical implementations in medical image classification. 

Keywords: Tuberculosis Detection, Chest X-ray Classification, Convolutional Neural Networks, Data Augmentation, 

Medical Image Analysis. 

1. INTRODUCTION 

Tuberculosis (TB) remains one of the leading infectious diseases worldwide, affecting an estimated one-third to one-

fourth of the global population with the bacillus Mycobacterium tuberculosis, the causative agent of TB [1]. In 2019, it 

was estimated that over 10 million individuals globally contracted TB, yet only 71% were detected, diagnosed, and 

reported through various countries’ national TB programs, leaving approximately 29% of cases unreported [2]. 

According to the World Health Organization’s (WHO) 2023 TB report, TB was identified as the second most common 

cause of death among infectious diseases [3]. Furthermore, the global incidence rate of TB remains alarmingly high at 

approximately 133 new cases per 100,000 people annually [3].  

This situation underscores the need for prompt, effective, and affordable screening and treatment strategies to meet the 

WHO’s ambitious goals of reducing TB incidence by 80%,  decreasing TB mortality by 90%, and eliminating 

catastrophic financial burdens on families affected by TB by 2030 [4]. 

The World Health Organization (WHO) advised member countries to proactively conduct TB screenings and detection, 

especially within the high-risk groups, taking into account their unique epidemic scenarios and financial levels [5]. 

While bacteriological tests, including sputum cultures, sputum smears, and molecular diagnostics, are considered the 

gold standard for identifying active TB cases, their applicability on a large scale, particularly among high-risk 

populations, is not feasible [6]. This limitation is due to the methods being resource-intensive, logistically challenging, 

and associated with prolonged turnaround times [7].  

As a result, chest radiography has become the most prevalent method for early TB detection [8]. However, in countries 

with limited resources, which also bear the highest TB burden, the availability of chest radiography screenings remains 

inadequate, primarily due to a shortage of radiologists [6]. 

In recent years, significant advancements have been made in leveraging artificial intelligence, particularly through 

machine learning and deep learning techniques, for analyzing chest X-ray (CXR) images to differentiate between TB-

positive and TB-negative images [9-15]. This innovation has enabled individuals without radiology expertise to conduct 
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TB screening tests, presenting a significant shift in diagnostic approaches. These technologies have shown promising 

results, to the extent of outperforming radiologists in the interpretation of CXR images [14, 15]. In this research, we 

investigate the effectiveness of different convolutional neural network (CNN) architectures in classifying tuberculosis 

in CXR images.  

We compare and evaluate the performance of popular CNN models including ResNet, Inception, and VGG, and examine 

the impact of different hyperparameters on classification accuracy. To the best of our knowledge, this study is the first 

to utilize a larger and more diverse dataset and conduct a comprehensive comparison of the latest CNN architectures, 

including ResNet101, ResNet152, and Inception-V2, assessed across different parameters. The research aims to address 

the following questions 

1. How does the choice of CNN architecture affect the classification performance? 

2. What is the optimal hyperparameter configuration for each CNN architecture? 

3. Can transfer learning be leveraged to improve classification accuracy? 

4. How does incorporating data augmentation techniques impact the model’s performance compared to training solely 

on real images? 

The rest of the paper is organized as follows. In the next section, we present the literature review, which provides an 

overview of the current state of research in the field. 

This is followed by the methodology section, where we describe the deep learning models used in this research along 

with the techniques for improving training time such as transfer learning. We also describe the data and the data and 

analysis procedures used in our study such as data augmentation to mitigate against imbalance. Next, we present the 

results of our analysis, including any findings. 

Finally, we discuss the implications of our results, conclude with a summary of our main findings, and suggest areas for 

future research. 

2. METHODOLOGY 

In this section, we provide a comprehensive overview of the methodologies used in our study, including the dataset and 

preprocessing, data normalization, data augmentation, the application of transfer learning methods, the architecture of 

CNNs utilized, and the evaluation metrics adopted to assess the performance of the models. 

2.1 Implementation Overview 

The implementation framework illustrated in Figure1 starts with the acquisition of a well-defined dataset, followed by 

comprehensive data pre-processing, which includes data augmentation, resizing, normalization, and partitioning into 

training, validation, and test sets. Subsequently, we embark on the development of various deep learning models.  

These models undergo extensive training and evaluation against different hyperparameters and evaluation metrics, to 

accurately predict and classify CXR images into positive or negative cases of TB. 

 

Figure 1: The implementation flow of the deep learning classification methodology 
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2.2 Dataset 

The dataset utilized in this research comprises 4,200 CXR images sourced from a public Kaggle data repository. The 

data set was compiled through a collaborative effort between researchers from Qatar University (Doha, Qatar), the 

University of Dhaka (Bangladesh), and collaborators from Malaysia.  

They worked closely with medical professionals from the Hamad Medical Corporation (Doha, Qatar) and various 

healthcare institutions in Bangladesh. The dataset consists of 700 CXRs images indicative of TB and 3,500 CXRs images 

classified as normal, with all images having a resolution of 512×512 pixels [32]. This composition provides a substantial 

foundation for evaluating the effectiveness of CNN models in the detection of TB from CXR images. Figure 2 presents 

some of the images from the dataset 

 

(a)                                (b) 

Figure2: The CXR sample images (a) TB-Negative (b) TB-positive 

2.3 Pre-Processing 

To optimize the performance and efficiency of our models,we implemented key pre-processing techniques, specifically 

data normalization and augmentation, prior to training the models. 

Data Normalization: In the pre-processing stage of image analysis, normalization is a critical step to standardize the 

input data, facilitating the model’s learning process. This study applies normalization to CXR images, which initially 

possess pixel intensity values in the range of 0 to 255, common for grayscale images [33]. The goal of normalization is 

to adjust these intensity values to a standardized scale that improves computational efficiency and model convergence 

during training. The normalization process is mathematically represented as follows: 

 

Where: 

• I represent the original pixel intensity of the image, 

• Imin and Imax are the minimum and maximum possible intensity values in the original image,     rpectively, I is the 

normalized pixel intensity. 

For gray scale images, Imin=0 and Imax=255.This equation effectively rescales the pixel intensity values to the range 

[0,1], making the input data more suitable for processing by the neural network layers. This normalization technique is 

advantageous because it ensures that each input parameter (pixel, in this case) contributes equally to the analysis, 

preventing features with initially larger ranges from dominating the learning process[34].It also helps to stabilize the 

gradient descent optimization algorithm by maintaining a consistent scale for all gradients [35]. 

Data Augmentation: Data Augmentation represents a powerful regularization strategy designed to artificially increase 

the dataset through label-preserving transformations, there by incorporating more invariant examples into the training 

set [36]. This approach, characterized by its computational efficiency, has been previously used to reduce overfitting 

when training CNNs, such as in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), where it 

contributed to achieving state-of-the-art results [37]. This method enhances the robustness and generalizability of deep 

learning models by exposing them to a wider array of variations, simulating real-world variability. In our study, to 

address the imbalance between TB-positive and TB-negative images and to introduce different variations, we randomly 

augmented 30% of the TB-positive images and 5% of TB-negative images.  

The data augmentation techniques applied included random rotation within a range of 0 to 60 degrees, random width 

and height shifts of up to 0.2 times the image size, and random zooming of up to 0.2 times the original size, alongside 

horizontal and vertical flipping. To manage the newly created pixels from such transformations, a “fill mode” strategy 

was employed, ensuring integrity and consistency in the augmented images. These augmentations were performed using 

Keras’s Image Data Generator, a comprehensive data augmentation suite [38]. Figure3 shows a sample of real images 

and their corresponding augmented outputs. 
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Figure 3: Sample of real and corresponding augmented images 

2.4 Transfer Learning 

Transfer Learning is a machine learning technique where a model developed for a specific task is repurposed as the 

starting point for a model on a second, related task[39].This technique leverages the knowledge gained during the initial 

training phase in one domain to enhance learning in another, potentially unrelated domain. It operates under the principle 

that information learned in one context can be exploited to accelerate or improve the optimization process in another, 

essentially allowing for the transfer of learned features and patterns across different but related problems [39]. This 

approach is particularly beneficial in situations where the dataset for the second task is too small to train a deep learning 

model from scratch or when computational resources are limited, offering a pathway to achieve high model performance 

with relatively less data and training time. 

In this study, we propose an implementation that capitalizes on the transfer learning paradigm by utilizing pre- trained 

models such as Inception-v3, ResNet (50, 101, 152), and VGG (16, 19), which were initially trained on the Image Net 

dataset[37].This adaptation involves fine-tuning and customizing the models ’last layers to suit our classification task, 

effectively tailoring the robust, pre-learned representations of the ImageNet dataset to recognize and interpret the 

specific patterns and anomalies associated with TB in CXR images. 

2.5 CNN Architectures 

In the next subsections, we provide a brief description of the VGG and ResNet families of CNN architectures as well as 

the Inception ResNet architecture that are considered in this study. 

VGGNet: Introduced by Simonyan and Zisserman from the University of Oxford’s Visual Geometry Group in 2014, the 

VGGNet architecture marked a significant milestone in the field of deep learning [43]. Known for its outstanding 

performance in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) of that year, VGGNet is 

characterized by its use of 3×3 filters in all convolutional layers, simulating the effects of larger receptive fields. This 

architecture is available in two variants, VGG16 and VGG19, differing in depth and the number of layers, with VGG19 

being the deeper model. 

In our research, we utilized both the VGG16 and VGG19 architectures to train models on datasets consisting of solely 

real CXR images, and a combination of augmented and real images. This approach aimed to assess the impact of 

incorporating augmented images on the performance of these two architectures. Images were resized to 256×256 pixels 

before being input into the networks. We extended the architectures by adding a flattening layer, followed by a dense 

layer of 512 neurons with are lu activation function and a dropout layer with a dropout rate of 0.2 to mitigate overfitting. 

A softmax activation function was used in the output layer for binary classification. We employed the Adam optimizer 

with the binary cross entropy loss function for optimization. The training was conducted over 15 epochs with a batch 

size of 32 for both models. This rigorous approach ensured both architectures could classify between TB-positive and 

TB-negative CXR images accurately. 

ResNet:[41] introduced the deep residual network (ResNet) architecture in their 2016 seminal paper. This architecture 

greatly improved the performance of deep neural networks and went on to win the COCO object detection challenge 

and the 2015 ImageNet Large Scale Visual Recognition Challenge (ILSVRC). To date, several variants of the ResNet 

architecture exist, including ResNet50, ResNet101, and ResNet152, which vary in depth and number of layers. ResNet 

architectures are very deep models [41, 44]. The core idea behind ResNet is the use of residual connections, also known 
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as shortcuts, which bypass one or more layers. By resolving the vanishing gradient issue, these shortcuts maintain the 

gradient flow across the network and facilitate the training of much deeper networks [41]. 

The CXR images in this study were classified using the ResNet50, ResNet101, and ResNet152 architectures. We added 

three more layers to the ResNet50 model, two, each with 256 units and one with 512 units, using batch normalization 

and ReLU activation in each layer. To reduce overfitting, dropout layers were added with dropout rates of 0.3, 0.25, and 

0.2 respectively. The binary cross-entropy loss function was used to compile the model, while the Adam optimizer was 

used to optimize the model at a learning rate of 0.001. Two units with a softmax activation function made up the output 

layer, which classified the images as either TB-positive or TB-negative. Training for this model involved 16 batch sizes 

and 100 epochs. 

ResNet101 was trained using the same settings as ResNet50, as preliminary training showed that the same parameter 

values used for ResNet50, also yielded optimal results for the ResNet101 architecture. For ResNet152,a selective fine-

tuning approach was adopted where, only the last 10 layers of the network were trainable, enhancing the model’s focus 

on more feature-specific adjustments in the later stages of the network. This model shared the augmentation layers of 

ResNet50 but was trained for only 50 epochs, incorporating a learning rate scheduler, Reduce LR On Plateau, which 

adjusted the rate based on the validation loss with a factor of 0.1, patience of 5, and a minimum learning rate of 1×10, 

thereby optimizing the training dynamics. The details of the models’ configuration are shown in Table 1. 

Hyperparameter ResNet50 ResNet101 ResNet152 

Number of Layers 53(50base+3extra) 104(101base+3extra) 155(152base+3extra) 

Units per Layer 256,256,512 256,256,512 256,256,512 

Activation ReLU ReLU ReLU 

Batch Normalization Yes Yes Yes 

Drop out Rate 0.3,0.25,0.2 0.3,0.25,0.2 0.3,0.25,0.2 

Optimizer Adam Adam Adam 

Learning Rate 0.001 0.001 Variable(Reduce LR On Plateau) 

Loss Function Binary Cross 

entropy 

Binary Cross entropy Binary Cross entropy 

Training Epochs 100 100 50 

Batch Size 16 16 16 

Inception-ResNet: The Inception networks, introduced by Szegedy et al. [45], have greatly advanced the field of CNN 

as they have achieved state-of-the-art performance in a number of computer vision problems [45-47]. The original 

Inception V1, also known as GoogleNet, was first introduced in 2014 and won the ILSVRC of that year. The architecture 

introduced a novel approach, of using multiple convolutional filter sizes in parallel, allowing the network to capture 

various spatial features of different scales with improved utilization of computing resources [45]. 

In this study, we used Inception-ResNet V2 architecture, a hybrid model that combines the benefits of both the Inception 

and residual networks. This hybrid approach enables the architecture to learn more complex features with improved 

training stability and faster convergence [45]. The Inception-ResNet V2 also leverages residual connections to skip 

certain layers during training, which helps it improve gradient flow, accelerate training times, and reduce the likelihood 

of vanishing gradient problems in deep networks [48]. We selected Inception-ResNet V2 due to its demonstrated state-

of-the-art results in several medical imaging tasks [47]. 

For our implementation, the Inception-ResNet V2 architecture was initialized with weights pre-trained on the ImageNet 

dataset. Similar to our approach with the ResNet152 model, all layers except the last ten were frozen to retain the pre-

trained features from ImageNet.  

The last ten layers were set to be trainable, enabling the model to learn specific features from the CXR images. We 

added three new layers: two with 256 units each and one with512 units, all using ReLU activations and Batch 

Normalization. Each of these layers was followed by Dropout layers with rates of 0.4, 0.35, and 0.3, respectively, to 

introduce non-linearity and reduce overfitting.  

The final output layer consisted of two units with a softmax activation function for binary classification. The model was 

then compiled using binary cross-entropy as the loss function and the Adam optimizer with a learning rate of 0.0001. 

Training was conducted for 50 epochs with a batch size of 16. 
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3. MODELING AND ANALYSIS 

The performance of the CNN architectures in classifying CXR images into TB-positive and TB-negative categories was 

assessed using several standard performance metrics including: accuracy, precision, recall, F1-score, and the 

Area under the Receiver Operating Characteristic curve (AUC-ROC). Each metric provides unique insights into the 

model’s classification abilities, considering both the true and false predictions. 

Accuracy: this metric measure the proportion of true positive and true negative results among the total number of cases 

examined: 

 

Where: 

• TP (True Positives): The number of TB-positive images that are correctly identified as TB-positive by the model 

• TN (True Negatives): The number of TB-negative images that are correctly identified as TB-negative by the model 

• FP (False Positives): The number of TB-negative images that are incorrectly identified as TB-positive by the model 

• FN (False Negatives): The number of TB-positive images that are incorrectly identified as TB-negative by the 

model. 

Precision: Also known as positive predictive value, precision is the ratio of correctly identified TB cases to all cases that 

were diagnosed as TB by the model. It measures the model’s accuracy in diagnosing a patient with TB when the model 

predicts the disease. High precision indicates a low rate of false TB diagnoses. Mathematically, it is defined as: 

 

Recall: Recall, or sensitivity, is especially critical in medical diagnostics as it quantifies the model’s ability to correctly 

identify all actual TB cases. It represents the proportion of actual TB cases that were correctly identified by the model 

and aims to minimize the risk of missing a true TB case. It is computed as: 

 

F1-Score: The F1-score is the harmonic mean of precision and recall, providing a single measure that balances both the 

false positives and false negatives. In TB diagnosis, it is particularly useful because it creates a balance between precision 

(minimizing false TB diagnoses) and recall (minimizing missed TB diagnoses), which is crucial for medical screening 

tests. It is defined as: 

 

AUC-ROC: The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) measures a model’s ability to 

discern between positive and negative classes. In the context of our problem, that specifically refers to distinguishing 

between TB-positive and TB-negative CXR images. The AUC-ROC curve is a plot of the true positive rate (TPR) 

against the false positive rate (FPR) at various threshold settings. The AUC-ROC provides an aggregated measure of 

the model’s performance across all classification thresholds, with a value of 1 representing a perfect model and a value 

of 0.5 representing a model with no discriminatory power. The approximate area under the receiver operating 

characteristic curve (AUC-ROC) is calculated by using the following formula: 

 

Where i is the current data point or threshold, FPRi and TPRi are the false positive and true positive rates at the i-th 

threshold, respectively, and n is the number of data points or thresholds used to calculate the AUC-ROC. Each term in 

the sum represents the area of a trapezoid where (FPRi − FPRi−1) is the base of the trapezoid and (TPRi+TPRi−1)/2 is 

the average height of the trapezoid. The formula calculates the AUC-ROC by summing the areas of trapezoids formed 

by connecting consecutive points on the AUC-ROC curve. 
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4. RESULTS AND DISCUSSION 

The study aimed to analyze and compare the performance of various CNN architectures, including VGG16, VGG19, 

ResNet50, ResNet101, ResNet152, and Inception-ResNet-V2, in classifying CXR images as either TB-positive or TB- 

negative. Additionally, we also investigated whether data augmentation could further improve the classification 

performance of these models by comparing the performance of models trained on only real images versus those trained 

on a combination of real and augmented data. We went further to examine the training time and the number of parameters 

for each architecture to understand the computational efficiency and resource demands for each model. This analysis is 

important for practical implementation, particularly in resource-constrained settings where training time and 

computational costs are significant considerations. By evaluating these parameters, we aimed to identify models that 

not only perform well but also offer a balanced trade-off between accuracy and efficiency, making them suitable for 

real-world applications in diverse healthcare environments. Table2 presents the models’ performance evaluated across 

accuracy, precision, recall, and F-score for models trained on real images and those trained on a combination of real and 

augmented data. Figure 4 shows the performance of these models when evaluated using the AUC-ROC score metric. It 

is observed that the VGG16 outperformed all other architectures across all metrics, with an accuracy of 99.4%, precision 

of 97.9%, recall of 98.6%, F1-Score of 98.3%, and AUC of 98.25%. Its performance was superior consistently 

irrespective of whether the models were trained with or without data augmentation. 

Table 2: Evaluation of CNN architectures across key evaluation metrics: This table summarizes the performance of 

various CNN architectures according to precision, recall, and F1-Score. Models marked with an asterisk (*) were 

trained using a combination of real and augmented data, showcasing the impact of data augmentation on model 

performance. 

Architecture Accuracy Precision Recall F1-Score 

VGG16 99.4 97.9 98.6 98.3 

* VGG16 99.3 96.6 99.3 97.9 

VGG19 99.2 96.6 98.6 97.6 

* VGG19 99.2 96.6 98.6 97.6 

ResNet50 96.1 81.3 96.9 88.4 

* ResNet50 89.0 97.5 30.0 45.9 

ResNet101 96.9 94.8 84.6 89.3 

* ResNet101 97.3 92.1 90.0 91.1 

ResNet152 97.9 93.6 93.6 93.6 

* ResNet152 97.5 87.6 96.6 92.1 

InceptionResNet-v2 99.0 95.9 98.6 97.2 

* InceptionResNet-v2 99.2 97.2 97.9 97.5 

Surprisingly, increasing the dataset size through data augmentation did not correspond with an increase in the 

performanceofthemodelsacrossallarchitectures,asseeninTable2.Thiswasalsoobservedinothermodelssuch as Resnet50, 

where when augmented data was included, the AUC-ROC score dropped significantly from 85.65% to 63.75% as shown 

in Figure 4. 

 

Figure 4: The models’ are a under a curve scores 
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4.1 Training Time 

We also tracked each model’s training time with a combination of data augmentation and real images versus training 

with only real images, as shown in Figure 5. As expected, training with data augmentation requires more time due to 

the increased size of the dataset. For example, training the ResNet152 with data augmentation took 

356.6 minutes whereas training without augmentation took 345.7 minutes. This observation highlights the trade- off 

between longer training times and the potential benefits of data augmentation. However, data augmentation did not 

improve performance in our case, indicating that the additional training time did not translate into better model 

generalization. 

 

Figure 5: Training time for the models 

4.2 Model Parameters 

In addition to our analysis, We provide a detailed breakdown of the parameter count for each model used in our study, 

as shown in Figure6. The number of parameters in a model reflects its complexity and capacity to learn from data. 

Consequently, it has a direct impact on both training time and the computational resources required, influencing the 

model’s overall efficiency and scalability. 

 

Figure 6: Parameters of each model 
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The findings from this study provide significant insights into the performance and efficiency of several CNN 

architectures in the classification of CXR images for TB detection. The architectures evaluated included VGG16, 

VGG19, ResNet50, ResNet101, ResNet152, and Inception-ResNet-V2. Of these, the VGG16 consistently achieved the 

highest performance across all metrics such as: accuracy, precision, recall, and F1-score. This consistent performance 

suggests that VGG16 effectively captures the necessary features for distinguishing between TB- positive and TB-

negative CXR images, even with fewer parameters compared to the deeper models. 

The findings also high light the fact that, while data augmentation is often used to improve the performance of CNN 

models by expanding the dataset and introducing variability, it does not necessarily lead to performance improvements 

if the base dataset already provides sufficient diversity for training. In our study, the original data set appeared robust 

enough, and the addition of augmented data did not enhance model performance. This suggests 

thatthebenefitsofdataaugmentationarecontext-dependentandmaynotalwaysbenecessaryoreffectivewhen the existing 

dataset is already well-suited for the task. 

It is commonly observed in several studies that models with a higher number of parameters, such as ResNet152 and 

InceptionResNet-V2, are capable of capturing more deep patterns in the data [41, 45]. However, this comes at the cost 

of requiring more computational resources and longer training times. Interestingly, in our study, despite having fewer 

parameters, VGG16 outperformed the more complex models. This suggests that for our specific task of classifying CXR 

images into TB-positive and Tb-negative categories, VGG16 efficiently captured the relevant features without 

necessitating excessive complexity. This finding highlights the importance of selecting the appropriate model 

architecture based on the specific characteristics and requirements of the task at hand, rather than simply opting for the 

model with the most parameters. This result also aligns with the principle that simpler models can often perform 

competitively when they are well-matched to the data and the problem domain [43]. 

5. CONCLUSION 

This study presents a comprehensive evaluation of several CNN architectures - VGG16, VGG19, ResNet50, ResNet101, 

ResNet152, and Inception-ResNet-V2 — in classifying CXR images as either TB-positive or TB-negative. The findings 

showed that the VGG16 architecture consistently outperformed the other models across all the evaluation metrics, 

achieving superior performance despite having fewer parameters compared to the more complex architectures such as 

ResNet152 and InceptionResNet-V2. 

Our results also showed limited benefits of data augmentation in this context, suggesting that the original dataset 

provided sufficient diversity for effective training. This highlights the importance of context in the application of data 

augmentation techniques. Furthermore, the study demonstrated the significant trade-offs between model complexity, 

training time, and performance. Models with more parameters, such as ResNet152 and Inception- ResNet-V2, required 

longer training times and more computational resources without corresponding improvements in classification 

performance across all the evaluation metrics. This result continues to emphasize the need for careful selection of model 

architecture based on the specific characteristics and requirements of the task at hand. Overall, our research contributes 

to the growing body of evidence supporting the effectiveness of deep learning models in medical image classification 

and provides insights into optimizing these models for TB detection in CXR images. 
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