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ABSTRACT 

The version space is progressively constructed by the candidate elimination method given a hypothesis space H and 

a set of instances E. One by one, the examples are added; by eliminating the assumptions that contradict the 

example, each example may reduce the version space. This is accomplished by the candidate elimination procedure, 

which updates the general and particular boundaries with every new case. 

1. INTRODUTION 

The recent focus on building knowledge-based systems within the artificial intelligence (AI) field has made rule 

and concept learning become increasingly essential tasks for AI researchers [2], [6]. For the challenging task of 

creating knowledge bases for use in such systems, a software that can extract general rules from training instances 

would be beneficial. We are still far from knowing effective, dependable ways for managing the combinatorics 

inherent in the learning job, despite some progress in this area [1], [9]. The process of learning concepts or rules. 

The National Science Foundation and the Advanced Research Projects Agency, under contract DAHC 15-73-C-

0435, provided funding for this work.                   

2. DEFINITION AND REPRESENTATION 

The term version space is used in this paper to refer to the set of current hypotheses of the correct statement of a rule 

which predicts some fixed action, A. In other words, it is the set of those statements of the rule which cannot be ruled 

out on the basis of training instances observed thus far. It is easy to see that this version space contains the set of all 

plausible rule revisions which may be made by a search algorithm in response to some new training instance. More 

exactly, assume that there is some rule R which correctly predicts action A for the class of training instances I+, but 

not for instances in the class I .  In terms of their predictions on 1+ and I-, the rule version space connected to action A 

and the instances 1+ and I-is an equivalency class of rules. The rules that anticipate the same action but have different 

patterns indicated on their left hand sides are the elements that make up the version space. 

We need to have a compact data representation for version spaces before we can write algorithms that reason in terms 

of them. In general, when the language of patterns for rules is complex, the number of probable alternatives can be 

very high, possibly infinite. Observing that the pattern matching technique defines a general-to-specific ordering on 

the rule pattern space is the key to an efficient representation of version spaces. 

While condition (2) guarantees that the rule will match every training instance in I+, condition (1) ensures that the rule 

cannot match any training instances in 1-. 

(1) and (?) will be required as well as sufficient requirements for membership of a rule statement in the version 

space, since the sets MGV and MSV are by definition complete.  

A Version Space Represented by it 's Extrenal Sets 
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2.1 Version Spaces and Rule Learning: 

Recall the rule learning task discussed earlier . A program is given examples of two classes of training instances, 1+ 

and I-. The program must determine some rule which will produce a given action, A, for each training instance in I+, 

but for no instance in I - . The candidate elimination algorithm presented here operates on the version space of all 

plausible rules at each step, beginning with the space of all rule versions consistent with the first positive training 

instance, and modifying the version space to eliminate candidate versions Knowledge Ar . q . - l30 Mitchell found to 

conflict instances. with subsequent training . The chief difference between the candidate elimination approach and the 

search approach discussed above is that search techniques select and modify a current best. Rather than select a single 

best rule version, the candidate elimination algorithm represents the space of all plausible rule versions, eliminating 

from consideration only those versions found to conflict with observed  training instances. Thus, the candidate 

elimination approach separates the deductive step of determining which rule versions are plausible, from the inductive 

step of selecting a current best- hypothesis. At any step, the same heuristics used by search methods to infer the 

current best hypothesis may be applied to infer the best element contained in the version space. However, by 

refraining from committing itself to this inductive step, the candidate elimination algorithm completely avoids the 

need to backtrack to undo past decisions or reexamine old training instances. At the Rule version spaces for each 

Distinct predicted action are then generated from the training instances associated with the action. Subsequent data 

may be analyzed to modify the version space in a manner guaranteed to be consistent with the original data. The 

candidate elimination algorithm operates on the maximally general and maximally specific sets representing the 

version space. The set of maximally general rule versions (MGV) is initialized to a single pattern consisting of the 

most general statement in the language of rule patterns (a single atom graph with no constrained node at tributes ) . 

The set of maximally specific versions (MSV) is initialized to a rule which contains as its pattern the first instance in 

I+. The initial version space represented by these external 

 

3. REASONING WITH VERSION SPACES 

 It seems that there are additional applications for an explicit representation of the space of plausible rule versions than 

what has been previously mentioned. The limitations on version spaces' general applicability are covered in this 

section along with some intriguing new applications. 

3.1 Applicapility and Limitations: 

The above-discussed version space approach to rule learning has some limitations. The algorithm is predicated on the 

idea that training instances should be assigned to 1+ and Ii s consistence, meaning that at least one rule in the rule 

space can produce the provided classification of training instances. This may be true in some domains, but in some 

"noisy" domains the procedure of  There could be irregularities in the training cases themselves or in the instances' 
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classification. The method will exclude all rule variants from consideration and force backtracking if the set of 

training cases is inconsistent. However, this is not worse than what is anticipated from other non-statistical techniques, 

as they all necessitate going backward in  particular, it means that there isn't a rule in the provided rule language that 

can distinguish between 1+ and I-. This might happen when there is noisy data or when the rule language isn't 

complicated enough to express the given dichotomy between 1+ and I-. Eliminating only candidate versions that 

conflict with a fixed number of training instances greater than one* could be one way to make the candidate 

elimination algorithm more tolerant of noisy data. The cost of this extension would be a slower rate at which the 

version space boundaries converge toward one another. The nature of the partial ordering of version spaces may 

represent a second restriction on their universal application. Despite the complicated language of rule patterns, Meta-

DENDRAL suggests that the size of these sets may be manageable for basic molecules. * That being said, it's likely 

that the size of these external sets may grow significantly for some domains. Knowledge of the interdependencies 

between the node characteristics is used in Meta-DENDRAL to remove rule statements that are conceptually 

comparable but syntactically different. Therefore, redundancy in the rule language has no negative effect on the size of 

the external sets. Adding domain-specific restrictions on the elements of the version space that are permitted is a 

second potential strategy for reducing the size of the maximum general and maximally specific version sets. AI 

programs frequently make use of task domain knowledge. In contrast, the efficiency of search procedures and their 

need for backtracking appear to be adversely affected by both the number of branches in the partial ordering and the 

depth of the branches. 

3.2 Other Uses for Version Spaces: 

Version spaces provide an explicit representation of the range of plausible rules. With this explicit representation, the 

program acquires the ability to reason more abstractly about its actions. The program is aware of more than the current 

best hypothesis - it has available the entire range of plausible choices. This view of version spaces suggests their use 

for tasks other than the particular rule learning task 

4. CONCLUSION 

The importance of careful selection of training instances for efficient and reliable learning has been stressed .  Final 

result is presentation of Since version spaces represent the range of rule versions which cannot be resolved by the 

current training data, they also summarize the range of unencountered training that will be useful in selecting among 

competing rule versions. By constructing a training instance which matches some, but not all , of the maximally 

general versions, the program may be able to determine which of several potentially important attributes should be 

specified in a rule . On the other hand, by constructing training instances which match a given most general version, 

but not its most specific counterpart, the program may determine how specific the constraint on a given attribute must 

be useful. 
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