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ABSTRACT 

This review paper provides a thorough examination of the recent developments in semantic segmentation techniques 

tailored for autonomous driving applications. Focusing on the pivotal role of semantic segmentation in enhancing scene 

understanding for self-driving vehicles, we analyze state-of-the-art methods, benchmark datasets, and evaluate 

performance metrics. The paper delves into the challenges posed by diverse environmental conditions and presents 

innovative solutions proposed in literature. Additionally, it explores the integration of deep learning architectures, real-

time processing considerations, and the impact of hardware advancements on semantic segmentation performance. The 

synthesis of these findings aims to offer a valuable resource for researchers, engineers, and practitioners involved in the 

evolution of autonomous driving technologies. 

1. INTRODUCTION 

Autonomous Vehicles have a variety of different sensor systems onboard to detect obstacles, lanes, free parking spaces, 

etc. [1], [2]. A frequently applied technique in this field is image segmentation, which uses camera images to classify 

each pixel. The predicted images can be used to plan the vehicle’s behavior and avoid collisions [3], [4]. This work was 

conducted in the context of the Carolo-Cup, a student competition providing student teams with a platform for the design 

and implementation of autonomous Radio Controlled (RC) vehicles. They must accomplish various driving tasks such 

as parking or overtaking in an imitated environment containing obstacles, intersections, parking spaces, and more. 

Furthermore, RC vehicles use embedded hardware to run the sensing, planning, control algorithms, etc. The algorithms 

must therefore run in realtime so that the vehicle can drive smoothly and reliably. [5] To classify the pixels of the images 

delivered by the camera built on top of the vehicle, several image segmentation models. The advent of autonomous 

driving technology has propelled the need for robust perception systems capable of comprehending complex real-world 

environments. Among the critical components of such systems, semantic segmentation stands out as a key enabler for 

intelligent decision-making. Semantic segmentation involves classifying each pixel in an image into distinct categories, 

providing a detailed understanding of the scene. In the context of autonomous vehicles, this technology plays a pivotal 

role in enhancing situational awareness, enabling the vehicle to navigate safely through dynamic and varied 

surroundings. 

This review paper aims to provide a comprehensive overview of the recent advancements in semantic segmentation 

techniques tailored specifically for autonomous driving applications. As self-driving vehicles move closer to real-world 

deployment, the accuracy and efficiency of their perception systems become paramount. Semantic segmentation not 

only aids in object recognition but also facilitates a nuanced understanding of the spatial relationships between different 

entities in the scene. This nuanced understanding is crucial for decision-making algorithms, allowing vehicles to 

navigate, plan trajectories, and interact with the environment in a manner that ensures both safety and efficiency. 

In the following sections, we will delve into the evolution of semantic segmentation methodologies, exploring the 

transition from traditional computer vision approaches to the dominance of deep learning techniques. We will assess 

the challenges inherent in autonomous driving scenarios, such as varying lighting conditions, diverse landscapes, and 

the need for real-time processing. Furthermore, we will analyze benchmark datasets commonly used for evaluating 

segmentation algorithms, shedding light on the complexities of real-world scenarios. As we navigate through the 

intricacies of semantic segmentation in autonomous driving, this review aims to serve as a valuable resource for 

researchers, engineers, and practitioners involved in advancing the state-of-the-art in autonomous vehicle perception 

systems. By synthesizing key findings from recent literature, we seek to contribute to the ongoing dialogue that shapes 

the future of autonomous driving technologies. Environmental perception is an important aspect within the field of 

autonomous vehicles that provides crucial information about the driving domain, including but not limited to identifying 

clear driving areas and surrounding obstacles. Semantic segmentation is a widely used perception method for self-

driving cars that associates each pixel of an image with a predefined class. In this context, several segmentation models 

are evaluated regarding accuracy and efficiency. Experimental results on the generated dataset confirm that the 

segmentation model FasterSeg is fast enough to be used in realtime on lowpower computational (embedded) devices in 

self-driving cars. A simple method is also introduced to generate synthetic training data for the model. Moreover, the 

accuracy of the first-person perspective and the bird's eye view perspective are compared. For a 320×256 input in the 
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first-person perspective, FasterSeg achieves 65.44% mean Intersection over Union (mIoU), and for a 320×256 input 

from the bird's eye view perspective, FasterSeg achieves 64.08% mIoU. Both perspectives achieve a frame rate of 

247.11 Frames per Second (FPS) on the NVIDIA Jetson AGX Xavier. Lastly, the frame rate and the accuracy with 

respect to the arithmetic 16-bit Floating Point (FP16) and 32-bit Floating Point (FP32) of both perspectives are measured 

and compared on the target hardware. were evaluated. A dataset representing the imitated environment is required to 

train the segmentation neural network. In this context, synthetic images generated with a simulation are combined with 

real images of the Carolo-Cup environment to compose the training dataset. Supervised learning is used in this work 

because each image of the dataset has its corresponding ground truth. The motivation of this work is to generate a dataset 

that mainly contains synthetic data to avoid high labeling effort. Thus, the routes can be generated in a simulation and 

must not be replicated. Moreover, a stateof-the-art image segmentation model is applied in realtime on a comparatively 

slow embedded hardware. Additionally, the potential of the bird’s eye view perspective is examined. Both the overall 

accuracy mean Intersection over Union (mIoU) and the accuracy Intersection over Union (IoU) of each class are then 

investigated more closely.  

This paper attempts to answer four main questions: 

• Which image segmentation model is fast and accurate enough for the Carolo-Cup?  

• How to easily generate labeled synthetic data? • Is the bird’s eye view perspective a better alternative compared to 

the first-person perspective?  

• What impact does the 16-bit Floating Point (FP16) and the 32-bit Floating Point (FP32) arithmetic have on the 

model accuracy and the real-time capability?  

• This paper is organized as follows. First, different segmentation models are evaluated to find a suitable option for 

this work. Secondly, a method for generating labeled synthetic data is described. Lastly, two different experiments 

are conducted, using the selected segmentation model trained with the generated data. The first experiment 

examines the accuracy of two models trained with data from two different perspectives: the first-person and the 

bird’s eye view perspective. The second experiment explores the real-time capability and accuracy regarding the 

arithmetic FP16 and FP32 of both models. The intended contributions of this study are the following: 

• The development of a simple, yet effective method to generate synthetic data representing an imitated environment 

for autonomous vehicles.  

• Exploring the possibility of executing semantic segmentation on low-power embedded devices using images from 

the bird’s eye view perspective.  

2. RELATED WORK T 

he following section describes related work which is relevant. First, the fundamentals of synthetic data generation are 

introduced. In the second paragraph, an overview of real data sources is provided. Then, various image segmentation 

models are evaluated and compared in terms of accuracy and frame rate. Finally, the chosen image segmentation model 

is further described.  

A. ROAD GENERATION AND SIMULATION 

Gazebo is chosen as the simulation environment to replicate realistic driving scenes. The synthetic routes used in Gazebo 

can be generated as images using a road generator provided by [6]. These images can be directly rendered in the 

simulation environment. To create various routes, the road generator is extended with the objects listed in Fig. 2. 

Furthermore, the generator is customized to create equivalent annotated routes [7]. 

B.  SOURCES OF REAL DATA 

In addition to the generated synthetic data, images from real routes in imitated environments are used. These real images 

are provided by various research teams such as Spatzenhirn (University of Ulm) [8], ISF Lowen (Technical University 

of ̈  Braunschweig) [9], KITcar (Karlsruhe Institute of Technology) [10], and it:movES (Esslingen University of Applied 

Sciences) [11]. Different environments offer a relatively high diversity of real images which can be very useful for 

training and testing an image segmentation model. The images are recorded using different cameras. 

C. EVALUATION OF STATE-OF-THE-ART IMAGE SEGMENTATION MODELS  

Image segmentation is an important part of visual perception systems for autonomous vehicles. It can be described as 

separating an image into any segments. Image segmentation can be divided into semantic segmentation and instance 

segmentation. Semantic segmentation refers to the process of assigning a label to each pixel of a picture. Instance 

segmentation extends the semantic segmentation scope further by detecting each instance of the object within the image 

and delineating it with a bounding box or segmentation mask. [27] To interpret the images of the vehicle’s environment, 

different instance and semantic segmentation models were evaluated. The goal of the evaluation is to find a model that 
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achieves a high inference frame rate measured in Frames per Second (FPS) while concurrently high detection accuracy. 

Table I lists the frame rate as well as the accuracy of some state-of-the-art instance segmentation models on different 

GPUs. The models were rated using the MS COCO benchmark dataset [12], and the Average Precision (AP) was used 

as an accuracy metric. Table II lists some state-of-theart semantic segmentation models rated with the Cityscapes 

benchmark dataset [13]. The mIoU is used to measure the models’ accuracies. The mIoU is defined as follows: 

 

Fig. 1. During search (left), the co-searching framework optimizes two architectures, and during training from scratch 

(right), it distills from a complicated teacher to a light student using KL [22]. 

 (αT , βT ) and a lightweight student (αS, βS, γS). FasterSeg training can be broken down into four stages: 

• Search the architecture 

• Pre-train the supernet 

• Pre-train the teacher network 

• Pre-train the student network 

In all experiments conducted the supernet is pre-trained for 20 epochs without changing the architecture parameters. 

Then the architecture search is done for 30 epochs. The epoch values are the same as used for the search experiments 

run by the FasterSeg developing team. [22]    

3. PROPOSED APPROACH  

The definitions of the labels with various scenarios of the imitated environment are shown in Fig. 2. In this section, the 

generation of the labeled data is described. Additionally, a method to transform the images into a bird’s eye view 

perspective is presented. 

A. SYNTHETIC DATA GENERATION  

The process of synthetic data generation is shown in its entirety in Fig. 3. This process is divided into three fields: the 

road generator, the simulation, and the image processing. Furthermore, the automation level of each task within the 

fields is visualized with a corresponding color. In the following, the tasks of each main field of the figure are described.  

1) Road Generator: Synthetic data generation starts with the creation of a route layout. High diversity and different 

constellations are essential for accurate predictions. Therefore, various configurations of parking zones, intersections, 

center line types, missing lines, objects, and curves with different radii and angles must be created. A raw and an 

annotated route are automatically generated using the designed layout. The road generator also creates x- and y- 

coordinates, as well as the yaw angle. This represents the spatial orientation for the trajectory of the simulated vehicle. 

The coordinates run along the center of the right lane. Special driving maneuvers, such as overtaking, parking, or 

crossing the intersection from different directions, must be added manually.  

2) Simulation: As described in Section II-A, Gazebo is selected as the simulation environment to generate synthetic 

training data for this work. The simulator produces realistic first-person perspective image sequences that replicate real 

driving scenarios. To achieve this, two different virtual vehicles are rendered in the simulator, each one driving on a 

different route created by the road generator. The first vehicle is driving on the raw route, while the second one is 

assigned the colored route. Due to the fact Gazebo is based on Robotic Operating System (ROS), the architecture and 

therefore the behavior of both vehicles are similar. The virtual vehicles were built based on the RC vehicle used at 

Esslingen University. After rendering both vehicles and routes in the simulation environment, the trajectory generated 

by the road generator is published using ROS. The publishing of the trajectory is executed for both vehicles at the same 

time. The camera topics are then recorded to produce two synchronized sequences of raw and colored images. These 

images are finally sent to the next stage for processing. Fig. 4 shows a flow chart of the trajectory publishing process. 
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3) Image Processing: To process the annotations, FasterSeg  requires an 8-bit grayscale image where each pixel contains 

the class ID. Therefore, each pixel of the colored image is replaced by the corresponding class ID using a lookup table. 

The result is an 8-bit grayscale image with IDs representing each class. Additionally, a Region of Interest (ROI) is set 

to exclude undetectable objects near the horizon. FasterSeg also requires the image height and width to be divisible by 

64. The generated images are thus checked and eventually downscaled.  

B. REAL DATA GENERATION 

To cover all driving scenarios and achieve optimal predictions, synthetic data must be extended with real images. It is 

necessary to consider special features that are not included in the simulation like natural lightning, blurred scenes, and 

surroundings beyond the route, as illustrated in Fig. 5. Hence, real images containing these features are added to the 

dataset. The real images include different driving maneuvers as well as objects with various orientations and visibility. 

In addition, depending on the data source, various image resolutions, grayscale and colored images, and various RC 

vehicles are used (II-B).  

C. BIRD’S EYE VIEW TRANSFORMATION  

There are multiple ways to transform a first-person perspective image into a bird’s eye view perspective. The warp 

perspective mapping method [26] is used for this work since no intrinsic nor extrinsic parameters of the cameras are 

available. This mapping method is suitable for several different camera models and does not require additional 

calibration. The mapping process consists of selecting four points Xego 

 

 

Fig.3 
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on the ground plane from the first-person perspective and their corresponding points X bird from the bird’s eye view 

perspective as illustrated in Fig. 6. X ego of the input image will be viewed as X bird. The mapping from X ego to X 

bird can be expressed as: 

The transformation matrix H can be calculated using the equation above. The matrix H is then used to map the input 

images from the first-person to the output of the bird’s eye view perspective using a pixel-by-pixel process [25]. 

4. EXPERIMENTS  

In this section, the conducted experiments to test the performance of the proposed model on the generated dataset as 

well as the respective results are described. In this context, the accuracy of the first-person and bird’s eye view 

perspectives are compared. Also, the frame rate and the accuracy of both perspectives are measured and compared using 

different model arithmetic on the NVIDIA Jetson AGX Xavier board.  

 

Fig. 4: In the left image [10], surroundings beyond the track like legs, feets and shoes are depicted in the background. 

The right image [11] shows a reflection on the track caused by natural lightning 

 

Fig.5: Bird’s eye view transformation process using four mapping points illustrated in red. 

A. COMPARISON OF FIRST-PERSON AND BIRD’S EYE VIEW PERSPECTIVE REGARDING 

ACCURACY 

This experiment compares the accuracy of the semantic segmentation model regarding the first-person and the bird’s 

eye view perspectives. For this purpose, two FasterSeg models are trained using a dataset from the first-person and the 

bird’s eye view perspectives. In the following, the dataset and the hyperparameters, which were used to train the models, 

are described. Finally, the results of this experiment are presented. 

1) DATASET:  

Table III describes the dataset used for the training  of the FasterSeg models. The dataset consists of synthetic and real 

images, received from the it:movES team. The images are divided into three sets: a training set (Train) containing 75 % 

of the images, a validation set (Val) consisting of 25 % of the images, and a test set (Test) composed of 20 real images 

used to measure the accuracy of the models. To train the bird’s eye view model, all the images are transformed into the 

bird’s eye view perspective using the method described in section III-C. Both FasterSeg models are trained using the 

same resolution (320 × 256) to objectively compare both perspectives. It is important to consider that this dataset 

contains only 11 objects instead of the initial 14 illustrated in Fig. 2. 

https://kitcar-team.de/
https://www.hs-esslingen.de/informatik-und-informationstechnik/forschung-labore/projekte/interne-projekte/
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2) SETTINGS:  

The training process of FasterSeg is divided into four substeps [22], [24]. Note that only the teacher network is used in 

this experiment. The configured hyperparameters, such as the number of epochs and the number of iterations per epoch, 

are listed in Table IV. The training runs on an NVIDIA Tesla 

TABLE-1 The Hyperparameters Adjusted For The Perspective Comparison Experiment. 

 

V100S-PCI GPU. 

3) RESULTS:  

Table V lists the predictions’ accuracies of the trained models. Strikingly, the bird’s eye view perspective achieves an 

mIoU that is almost as good as the first-person perspective. Considering the IoU of each class, the double solid center 

line and the stop line reach a much higher IoU in the first-person perspective than the bird’s eye view perspective. On 

the other hand, free parking space is predicted better in the bird’s eye view perspective. Fig. 7 shows several test 

predictions and their corresponding ground truth images. Although some of the images have light reflections on the 

track, this has no apparent impact on the predictions’ quality. Note that the predictions are less accurate when the vehicle 

changes lanes. The left and the right lanes are often confused during such maneuvers. Furthermore, both perspectives 

achieve an inference frame rate of 247.11 FPS on the NVIDIA Jetson AGX Xavier.  

TABLE.2 - The Measured Accuracies Of The First-Person And Bird’s Eye View Models Tested With Uniform 

Resolution. 

 

 

Fig. 6. Visual predictions of the trained FasterSeg models uzsing test dataset. First and second rows show the 

predictions and the corresponding ground truth images in the first-person perspective. Third and fourth rows illustrate 

the predictions and the corresponding ground truth images in the bird’s eye view perspective. Each color corresponds 

to a predefined class. 
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B. REAL-TIME CAPABILITY AND ACCURACY IN RELATION TO THE ARITHMETIC 

This experiment can be divided into two parts. The first part deals with the analysis of the real-time capability of 

FasterSeg. The second part examines the accuracy of FasterSeg concerning the arithmetic. For this purpose, two models 

are trained using a dataset different from the experiment above. The dataset consists of various resolution images from 

the first-person and the bird’s eye view perspectives. The inference is conducted on the NVIDIA Jetson AGX Xavier 

using the FP16 and the FP32 arithmetic. The TensorRT framework is used to perform the inference. In the following, 

the used dataset and hyperparameters are described. Finally, the results of the experiment are presented.  

1) DATASET: The dataset used to train the models is listed in Table VI. It consists of synthetic and real images from 

different data sources with different resolutions. The dataset is also divided into three sets as described in IV-A1. The 

test set used to compute the accuracy consists of 208 real images. Note that the dataset is significantly larger than the 

dataset used in the previous experiment. The dataset is also transformed into the bird’s eye view perspective to train the 

second Faster Seg model. 

2) SETTINGS: The adjusted hyperparameters for the FasterSeg models are 

TABLE- 3 The Dataset Generated For The Real-Time Capability And The Arithmetic Accuracy Comparison 

Experiment 

 

TABLE- 4 The Hyperparameters Adjusted For The Real-Time Capability And The Arithmetic Accuracy Comparison 

Experiment. 

 

5. CONCLUSION 

In this paper, the semantic segmentation model FasterSeg was investigated regarding the accuracy and the real-time 

capability in the Carolo-Cup environment on NVIDIA Jetson AGX Xavier embedded hardware.  

Synthetic images, which were generated using a semi-automated process, as well as real images were used to train the 

FasterSeg model. The experimental evaluation demonstrated that FasterSeg model reaches an accuracy of over 64 % 

and a frame rate of 247.11 FPS in a Carolo-Cup environment. 
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