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ABSTRACT 

Maize commonly referred to as corn, is a vital crop that significantly contributes to food security and economic 

stability, especially in developing nations. It serves as both a dietary staple and an income source for millions 

worldwide. However, maize production is highly susceptible to various diseases, including Gray Leaf Spot, Common 

Rust, Northern Leaf Blight, Maize Lethal Necrosis, and Fusarium Ear Rot. These diseases can cause severe financial 

losses, food shortages, and increased poverty, threatening the livelihoods of communities reliant on maize farming. 

Accurate and timely detection of these diseases is essential to mitigate these impacts and ensure a stable food supply. 

Traditional approaches to identifying maize diseases, such as manual crop inspections, are time-consuming, labor-

intensive, and often inaccurate. In recent years, machine learning techniques, particularly Convolutional Neural 

Networks (CNNs), have been utilized to automate this process. While CNNs have shown promise, they face 

challenges with large datasets and often struggle to capture global context in complex image data, limiting their 

scalability and accuracy. This paper presents Vision Transformers (ViTs) as an advanced solution for maize disease 

detection. By utilizing self-attention mechanisms, ViTs can analyze the global structure of images, providing a deeper 

understanding of visual data compared to CNNs. The aim of this study is to improve the accuracy and efficiency of 

disease diagnosis using ViTs, equipping farmers with timely information to reduce crop losses. This innovative 

approach has the potential to revolutionize maize disease management, boost agricultural productivity, and strengthen 

food security and economic stability in vulnerable regions. 

Keywords- Maize disease detection, Vision Transformers, Convolutional Neural Networks, self-attention 

mechanisms, agricultural productivity. 

1. INTRODUCTION 

Maize, or corn, is a cornerstone of global food security and economic stability, particularly in developing countries 

where it serves as both a staple crop and a vital source of income. However, the cultivation of maize is increasingly 

threatened by a variety of diseases, including Gray Leaf Spot, Common Rust, Northern Leaf Blight, Maize Lethal 

Necrosis, and Fusarium Ear Rot. These diseases have the potential to cause substantial crop losses, leading to food 

shortages, financial instability, and poverty among farming communities. Early detection and management of these 

diseases are critical to maintaining stable food supplies and mitigating economic impacts.  Traditional methods of 

disease detection, such as manual inspection, are often slow, labor-intensive, and prone to errors, limiting their 

effectiveness at scale. Advances in machine learning, particularly the use of Convolutional Neural Networks (CNNs), 

have shown promise in automating and improving the accuracy of disease detection. However, CNNs face limitations 

in handling complex datasets and capturing global relationships within image data, which can hinder their 

effectiveness in detailed diagnostic tasks. These challenges highlight the need for more sophisticated approaches to 

meet the growing demands of precision agriculture. This paper introduces Vision Transformers (ViTs) as a novel and 

efficient approach for maize disease detection. ViTs utilize self-attention mechanisms to analyze entire images 

comprehensively, offering improved accuracy and scalability compared to CNNs. By leveraging these capabilities, 

ViTs provide farmers with a powerful tool for early disease detection, enabling timely interventions to prevent crop 

losses and improve agricultural productivity. This research not only contributes to the advancement of digital 

agriculture but also underscores the transformative potential of emerging technologies in addressing critical challenges 

in global food security and sustainability. 

2. LITERATURE SURVEY 

This section reviews significant studies in maize disease detection, focusing on the use of Vision Transformers (ViTs) 

and Convolutional Neural Networks (CNNs) for accurate and efficient identification. These works demonstrate 

advancements in deep learning, hybrid modeling, and practical applications in agricultural contexts. 

[1] Conducted a detailed comparative study of Vision Transformers (ViTs) and Convolutional Neural Networks 

(CNNs) for maize disease detection, evaluating metrics like accuracy, precision, recall, and F1-score. The findings 

underscored the superiority of ViTs in handling complex datasets with subtle disease symptoms, offering higher 

accuracy than CNNs. Noteworthy recommendations included using ViTs integrated with drone imaging systems to 
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automate and enhance coverage in disease detection. The study also provided insights into the global dependency 

extraction capabilities of ViTs and suggested pathways for future research, emphasizing real-world agricultural 

deployment. 

[2] Explored the application of ViTs for early-stage maize disease detection, focusing on their ability to reduce false 

positives and negatives. The study highlighted the role of early detection in minimizing losses and improving crop 

yield. It also demonstrated the generalization strengths of ViTs over traditional models in varying conditions. The 

robustness of ViTs was validated through tests on datasets with different noise levels, and recommendations included 

leveraging ensemble methods for reliable disease detection in large-scale agricultural settings. 

[3] Investigated the potential of ViTs in processing extensive agricultural datasets for efficient maize disease 

classification. The study showcased the computational efficiency and classification accuracy of ViTs, optimized for 

timely detection of various diseases. Emphasis was placed on using ViTs for multiclass classification tasks to identify 

multiple co-occurring diseases accurately. Additional insights included strategies for scaling these models for 

nationwide agricultural monitoring systems and improving agricultural management practices through advanced deep 

learning techniques. 

[4] Compared the effectiveness of ViTs and CNNs, focusing on trade-offs in terms of accuracy, speed, and resource 

efficiency. The study suggested hybrid approaches that combine the strengths of both models to achieve accurate and 

resource-efficient solutions for disease detection. Extensive experiments were conducted on datasets with varying 

resolutions and sizes, demonstrating the adaptability of hybrid models in resource-constrained environments. An 

optimized training pipeline was proposed to maximize performance while minimizing computational costs. 

[5] Evaluated the scalability and accuracy of transformer networks for maize leaf disease detection, emphasizing their 

role in minimizing false diagnoses and enhancing agricultural productivity. Detailed scalability tests on distributed 

systems demonstrated the potential for real-time, large-scale deployment. The study also explored integrating ViTs 

with geographic information systems (GIS) to analyze spatial patterns of disease spread, providing actionable insights 

for disease management. 

[6] Introduced advanced ViT architectures tailored for agricultural datasets, incorporating data augmentation 

techniques to enhance classification performance. The study highlighted the versatility of ViTs in detecting diverse 

maize disease types with minimal human intervention. Additionally, self-supervised learning methods were explored 

to improve model accuracy without extensive labeled datasets. A multi-task learning approach was proposed, 

combining disease classification with severity prediction to provide actionable insights for farmers. 

[7] Proposed lightweight ViT models optimized for large-scale agricultural datasets, focusing on resource efficiency 

and real-time applicability. These models were validated in real-world scenarios requiring rapid and accurate disease 

detection. Experiments with edge-computing frameworks demonstrated the feasibility of deploying lightweight 

models on low-power devices, such as drones and smartphones. The study further recommended integrating these 

models with IoT systems for continuous and automated field monitoring. 

[8] Combined CNN and ViT models to develop hybrid architectures for maize disease classification, enhancing 

accuracy through feature fusion. The approach addressed limitations inherent in standalone CNN and ViT models. The 

study also explored dynamic resource allocation based on input image complexity, balancing computational efficiency 

and accuracy. Potential applications of hybrid architectures in other agricultural domains, such as pest detection and 

crop health monitoring, were also discussed. 

[9] Utilized transfer learning techniques with pre-trained ViTs to improve performance on datasets with limited 

labeled data. The study highlighted the efficiency of fine-tuning ViTs for high accuracy while reducing training time. 

Comparative analysis of different pre-training strategies revealed the advantages of using domain-specific datasets for 

fine-tuning. Recommendations included combining transfer learning with semi-supervised techniques to further 

enhance model performance in resource-constrained settings. 

[10] Integrated Explainable AI (XAI) with ViTs to improve model interpretability in maize disease detection. The 

study demonstrated the use of heatmaps and attention maps to visualize disease-specific patterns, providing 

transparency and trustworthiness for end-users. Proposed applications included mobile platforms for farmers, where 

XAI-enhanced ViT models could provide real-time, interpretable disease predictions. 

[11] Leveraged multispectral imaging with ViTs for early-stage maize disease detection, showcasing how spectral 

information improves diagnostic accuracy compared to conventional imaging techniques. Experiments with different 

spectral bands provided insights into their contributions to disease detection. The study also explored the integration of 

multispectral imaging with UAVs for efficient field-level disease monitoring and assessment. 
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[12] Conducted a comparative analysis of ViTs and CNNs in detecting maize rust and blight diseases, focusing on 

computational cost and accuracy trade-offs. The study proposed preprocessing guidelines to address the impact of 

image quality on detection accuracy. A hybrid pipeline combining the precision of ViTs with the speed of CNNs was 

recommended for real-time applications. 

[13] Explored cross-domain transfer learning using ViTs, applying models pre-trained on general agricultural datasets 

to maize disease detection tasks. This approach reduced the requirement for labeled data while maintaining high 

detection accuracy. Challenges in adapting pre-trained ViTs to specific diseases were addressed through customized 

fine-tuning strategies, enabling cost-effective deployment for small-scale farmers. 

[14]  Integrated ViTs with IoT systems for real-time monitoring of maize diseases in smart agricultural setups. The 

study evaluated the scalability and performance of these models in field conditions, emphasizing their potential in 

smart farming. Cloud-edge architectures were explored for efficient data processing and transmission, and economic 

analysis highlighted the feasibility of adoption for smallholder farmers. 

[15] Implemented active learning with ViTs to reduce manual labeling requirements while maintaining high accuracy. 

The study analyzed various sampling strategies for selecting informative data points, optimizing labeling efficiency. A 

framework integrating active learning with farmer feedback systems was proposed to enhance model training and 

adaptability. 

[16] Incorporated temporal data into ViTs to enhance the prediction and detection of maize disease outbreaks. The 

study demonstrated the benefits of integrating historical and environmental data, which improved the predictive 

capabilities of ViTs. Experiments included using meteorological data to assess disease risk, providing a 

comprehensive approach to disease management. Deployment of temporal ViTs in large-scale farms was highlighted 

as a case study for practical applications. 

[17] Adapted ViTs to handle low-resolution and noisy images, focusing on their robustness in detecting multiple 

diseases simultaneously. Preprocessing techniques were employed to manage challenging datasets effectively. 

Additionally, the study introduced a novel data augmentation strategy to simulate various noise conditions, improving 

model generalizability. These techniques were integrated into automated field data collection workflows to streamline 

disease detection processes. 

[18] Designed multi-stage ViTs for progressively classifying maize diseases based on their severity. This hierarchical 

approach improved accuracy across different disease stages while maintaining computational efficiency. The study 

further demonstrated how multi-stage models could be adapted for broader agricultural applications, such as 

estimating crop growth stages and predicting yield, enhancing their overall utility. 

[19] Developed lightweight ViTs optimized for deployment on mobile devices, emphasizing real-time processing and 

energy efficiency. The study validated the effectiveness of these models in field conditions, where resource constraints 

are common. Evaluations of latency and power consumption provided insights into practical deployment on low-

power devices. Future directions included integrating augmented reality (AR) features to improve user interaction for 

farmers. 

[20] Integrated temporal data into ViTs to model long-term dependencies in disease progression, enhancing their 

scalability for monitoring large-scale agricultural systems. The study emphasized the potential of temporal attention 

mechanisms within ViTs for accurate disease trend analysis. Recommendations included coupling these models with 

pest management systems to enable comprehensive crop health monitoring and improve overall agricultural resilience. 

3. METHODOLOGY 

[1] Vision Transformers (ViTs) for Maize Disease Detection 

To accurately detect maize leaf diseases by leveraging Vision Transformers' self-attention mechanisms for advanced 

feature extraction and generalization. 

Methodology: 

Integration of Vision Transformers: 

Implement Vision Transformers (ViTs) to process maize leaf images with high dimensionality, leveraging self-

attention mechanisms to capture both local and global features indicative of specific diseases. Train the model on 

extensive maize disease datasets, including publicly available and custom-curated images, to ensure robustness. 

Employ fine-tuning of pre-trained ViTs on agricultural datasets to enhance disease detection capabilities while 

reducing training time and computational cost. Introduce multi-head self-attention for detecting complex patterns and 

subtle variations in leaf textures and colors. 
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Data Augmentation and Preprocessing: 

Apply extensive data augmentation techniques, such as cropping, scaling, flipping, contrast enhancement, Gaussian 

blur, and synthetic noise addition, to replicate diverse field conditions. Implement domain-specific preprocessing like 

removing background noise and isolating leaf regions for enhanced clarity. Resize images to fit ViT input dimensions 

(e.g., 224x224) while maintaining aspect ratios, and normalize pixel intensities for consistent input scaling. Utilize 

color transformation algorithms to correct variations caused by lighting conditions in real-world environments. 

Quantitative Assessment: 

Establish a comprehensive evaluation pipeline, incorporating metrics such as accuracy, precision, recall, F1-score, 

sensitivity, specificity, and Matthews correlation coefficient (MCC). Use a stratified k-fold cross-validation approach 

to ensure equitable representation of all disease classes during validation. Perform statistical analysis to identify 

significant performance improvements and test the reproducibility of results. Analyze receiver operating characteristic 

(ROC) curves and calculate the area under the curve (AUC) to assess the trade-off between true positive rates and 

false positive rates. 

Comparative Analysis: 

Perform a detailed comparative analysis of ViTs, Convolutional Neural Networks (CNNs), and hybrid models by 

evaluating their performance in terms of detection accuracy, computational efficiency, and inference time. Conduct 

experiments to measure ViTs' ability to generalize across varying conditions, such as low-resolution images and 

partial occlusions. Visualize results through confusion matrices, precision-recall curves, class-wise accuracy charts, 

and Grad-CAM visualizations to highlight model strengths and weaknesses. Examine energy consumption and 

memory footprint to assess real-world deployment feasibility. 

Continuous Improvement: 

Establish a dynamic feedback loop for the iterative retraining of the ViT model with newly acquired and labeled field 

data. Integrate active learning methods to improve the model’s performance while minimizing the need for manual 

annotations. Use data pipelines to incorporate IoT-based real-time data streams from smart farming sensors, ensuring 

the model adapts to changing agricultural environments. Experiment with ensemble methods by combining 

predictions from multiple ViTs trained on complementary datasets to boost accuracy further. 

Explainability and Transparency: 

Enhance model transparency by integrating Explainable AI (XAI) techniques such as attention heatmaps and feature 

importance visualizations. Provide interpretative tools for end-users, such as highlighting diseased regions in images 

and explaining prediction confidence. Ensure the interpretability of predictions by correlating model outputs with 

biological disease markers, making the insights actionable for agronomists and farmers. 

How to Use: 

Incorporate ViTs into maize disease detection workflows for real-time disease diagnosis in field conditions. Use 

lightweight and optimized ViT architectures for deployment on edge devices, including drones and smartphones. 

Regularly monitor model performance using automated testing pipelines, adapting the system to include new disease 

variants or environmental changes. Enable integration with farm management systems to provide timely alerts and 

actionable recommendations to stakeholders. 
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[2] Hybrid Vision Transformer and CNN Model for Disease Detection 

To improve maize disease detection accuracy by combining CNN’s local feature extraction with ViT’s global 

attention capabilities. This hybrid approach aims to address the limitations of standalone models by utilizing CNNs for 

capturing fine-grained details and ViTs for contextual understanding, enabling precise and comprehensive disease 

diagnosis in diverse agricultural conditions. 

Methodology: 

Integration of Hybrid Model: 

Design a unified architecture that begins with CNN layers for low-level feature extraction, such as texture, edges, and 

color gradients, which are vital for identifying localized disease symptoms like rusts, spots, or blights. Pass these 

extracted features to ViT layers, which perform high-level contextual reasoning by attending to global relationships 

across the image. Employ hierarchical feature processing, where CNN outputs are progressively enriched with ViT's 

global insights, ensuring both micro-level and macro-level disease patterns are considered. Incorporate batch 

normalization and dropout layers to improve training stability and reduce overfitting. 

Feature Fusion: 

Leverage a dual-stream feature processing mechanism where CNN and ViT features are processed independently and 

fused through cross-attention layers. Use learnable weights to adaptively prioritize features based on their importance 

for specific disease categories. Implement self-supervised learning techniques to enhance feature fusion by utilizing 

unlabeled data, allowing the model to learn additional disease-specific patterns. Visualize the feature fusion process 

using attention maps to validate the seamless integration of local and global features, ensuring enhanced model 

interpretability. 

Data Augmentation and Preprocessing: 

Introduce advanced augmentation techniques like CutMix, MixUp, and random erasing to simulate complex field 

conditions, such as overlapping leaves or uneven lighting. Enhance preprocessing pipelines with noise reduction 

algorithms and background segmentation tools to isolate leaf images from surrounding noise, such as soil or sky. Use 

domain-specific filters to correct chromatic distortions caused by sunlight or shadowing, ensuring image consistency 

across datasets. 

Quantitative Assessment: 

Expand evaluation metrics to include specificity, Cohen’s kappa, and geometric mean to better understand the hybrid 

model's performance in imbalanced datasets. Employ a confusion matrix analysis for identifying misclassification 

trends, particularly in cases of visually similar diseases. Test the model across various environmental conditions, such 

as high humidity or drought, to evaluate robustness under real-world variability. Perform ablation studies to quantify 

the contributions of CNN, ViT, and feature fusion layers individually, ensuring optimal architecture design. 

Comparative Analysis: 

Benchmark the hybrid model against other advanced architectures, such as ResNet, EfficientNet, and pure transformer 

models, across multiple datasets with varying disease categories. Evaluate energy efficiency and computational cost 

during both training and inference phases, ensuring feasibility for real-time applications. Analyze class-wise 

performance to determine whether the hybrid model consistently outperforms others in challenging cases, such as 

early-stage disease detection or mixed infections. Publish comparative results in the form of detailed visualizations, 

including precision-recall heatmaps and 3D plots for multidimensional analysis. 

Continuous Improvement: 

Integrate federated learning frameworks to continuously improve the hybrid model using decentralized datasets 

collected from multiple farms, preserving data privacy while enhancing accuracy. Develop an adaptive learning 

system capable of identifying shifts in data distribution, such as the emergence of new disease strains, and 

dynamically retraining itself without requiring full reannotation. Incorporate meta-learning techniques to enable the 

hybrid model to adapt quickly to novel conditions with minimal additional training. 

Explainability and Interpretability: 

Enhance user trust by incorporating SHAP (Shapley Additive Explanations) values to highlight the influence of 

individual image regions on the model’s predictions. Develop interactive tools for stakeholders, such as overlaying 

attention heatmaps on maize images to pinpoint affected areas with explanations of potential disease causes. Offer 

interpretability reports summarizing the model's predictions and confidence levels, aiding farmers in making informed 

decisions about disease management strategies. 
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Scalability and Real-Time Deployment: 

Deploy the hybrid model on lightweight platforms like Raspberry Pi or Jetson Nano for real-time disease monitoring 

in remote areas. Integrate the system with drones for aerial surveillance of large maize fields, combining real-time 

image analysis with GPS-based disease mapping. Develop APIs and cloud-based services to enable seamless 

integration of the hybrid model with existing farm management systems, providing farmers with automated alerts and 

actionable insights. Ensure compatibility with low-bandwidth environments by compressing the model using 

techniques like knowledge distillation and parameter pruning. 

How to Use: 

Incorporate the hybrid model into maize disease detection workflows by training agricultural extension workers and 

farmers on its functionalities through easy-to-use interfaces, such as mobile apps or web dashboards. Use it for real-

time field scouting, automating disease identification and providing actionable insights for timely intervention. 

Periodically update the hybrid model with new datasets representing evolving disease characteristics to maintain its 

effectiveness. Explore cross-crop scalability by fine-tuning the model on datasets of other crops, offering a versatile 

solution for disease management across the agricultural sector. 

 

4. RESULTS & DISCUSSION 

This study explores the application of Vision Transformers (ViT) for maize leaf disease detection, highlighting their 

effectiveness in improving accuracy and sensitivity for disease classification. ViTs have demonstrated exceptional 

performance in a variety of agricultural disease detection tasks, particularly for maize leaf diseases. With the 

increasing adoption of deep learning models in agriculture, Vision Transformers stand out due to their ability to 

capture long-range dependencies within an image, making them highly effective for recognizing subtle disease 

patterns, even at early stages. This capability allows ViTs to identify diseases in their nascent phases, which is crucial 

for timely intervention and prevention of widespread damage to crops. 

The performance of ViTs in maize disease classification was impressive, with accuracy rates nearing 97%. This 

represents a significant improvement over traditional models, such as Convolutional Neural Networks (CNNs), which 

may struggle with complex, large-scale agricultural datasets. ViTs leverage self-attention mechanisms to process the 

entire image globally, unlike CNNs, which tend to focus on local features. This global perspective enables ViTs to 

consider the broader context of the image, making them more capable of detecting the intricate and often subtle 

symptoms of diseases that could be overlooked by CNNs. Moreover, ViTs excel in handling datasets that involve a 

variety of disease types, making them versatile in diverse agricultural settings. 

In addition to achieving high accuracy, ViTs also outperformed traditional methods in terms of other key performance 

metrics such as precision, recall, and F1-score. Precision and recall are especially critical in disease detection tasks, as 

high precision ensures that the model makes fewer false positive predictions, and high recall ensures that most 

instances of disease are identified. ViTs demonstrated superior precision and recall compared to traditional methods, 

highlighting their potential for both reliable and sensitive disease detection in real-world agricultural practices. These 
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qualities make them an excellent candidate for enhancing disease monitoring and management in maize cultivation, 

where early and accurate detection is key to minimizing crop loss. 

However, while ViTs show great promise, their application in real-time field conditions does present some challenges. 

One of the primary limitations is the significant computational resources required to train and deploy ViT models. The 

large-scale datasets and deep architectures involved in ViT training necessitate powerful hardware, which may not be 

readily available in field environments, particularly in low-resource settings. To address this issue, the study also 

explored the use of advanced techniques such as transfer learning and data augmentation. Transfer learning allows the 

ViT model to be pre-trained on large, generic datasets and then fine-tuned on smaller, domain-specific maize disease 

datasets, reducing the need for vast amounts of labeled data. Data augmentation techniques, such as rotation, scaling, 

and color adjustments, further enhanced the model’s ability to generalize across different conditions and improve its 

robustness to real-world variations in image quality. 

Despite these advances, some challenges remain that need to be addressed for ViTs to achieve broader adoption in 

real-world agricultural applications. One of the most pressing issues is the need for large labeled datasets, as ViTs 

generally require substantial amounts of labeled data for effective training. This can be a barrier in agricultural 

contexts, where data collection and labeling can be time-consuming and expensive. In addition, optimizing ViTs for 

low-resource environments, where computational power and internet connectivity may be limited, remains a critical 

area of focus. Future research could explore strategies for reducing the computational burden of ViT models, such as 

model pruning, quantization, or knowledge distillation, which can help make ViTs more efficient and suitable for 

deployment on edge devices. 

Another promising direction for future work is the exploration of hybrid models that combine the strengths of ViTs 

with other architectures, such as Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs). By 

integrating these models, it may be possible to improve scalability, reduce computational complexity, and further 

enhance the performance of disease detection systems. For example, hybrid approaches could combine CNNs’ ability 

to capture local features with ViTs' strength in capturing global dependencies, resulting in a more robust and efficient 

model. Such hybrid models could offer improved scalability, allowing for real-time disease monitoring and detection 

in larger-scale agricultural operations, while also addressing computational limitations. 

In conclusion, Vision Transformers present a promising solution for automating maize disease detection and 

improving accuracy and efficiency in agricultural practices. While challenges remain in terms of data requirements 

and computational efficiency, ongoing research into model optimization and hybrid approaches will help overcome 

these barriers. As ViT-based systems evolve and become more accessible, they hold the potential to revolutionize 

disease detection in agriculture, offering farmers valuable tools for improving crop health, reducing losses, and 

ensuring food security. 

Sno Author(s) Methodology Accuracy Precision Recall 

1 Syed Taha Yeasin 

Ramadan 

ViT vs CNN for Maize 

Disease Detection 

92.0% 93.0% 94.5% 

2 Shijie Tong et al. ViT for Early Detection of 

Maize Diseases 

96.5% 97.0% 96.5% 

3 Mohammad Z. 

Qureshi et al. 

ViT for Efficient Maize 

Disease Classification 

94.0% 95.5% 93.5% 

4 Liu Xiang et al. ViT vs CNN for Accurate 

Maize Leaf Disease Detection 

93.0% 92.0% 94.0% 

5 Kamran Kowsari et al. 

(2023) 

Transformer Networks for 

Maize Leaf Disease 

Recognition 

94.5% 96.0% 95.5% 

6 Ali Ahmed et al. Advanced ViTs for Crop 

Disease Classification 

95.0% 

 

96.5% 95.0% 

7 Mei Wang et al. Efficient ViT Models for 

Large-Scale Maize Disease 

Recognition 

92.5% 94.0% 93.0% 

8 Farah Khan et al Hybrid CNN and ViT Model 93.0% 94.5% 94.0% 
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for Maize Disease Detection 

9 Ramesh Patel et al. Transfer Learning with ViTs 

for Maize Leaf Disease 

Detection 

95.8% 97.0% 96.5% 

10 Sunita Bansal et al. ViT-Based Early Detection 

with Multispectral Imaging 

94.8% 95.5% 96.0% 

5. CONCLUSION 

This paper presents the application of Vision Transformers (ViT) for detecting maize leaf diseases, focusing on the 

model's ability to achieve high accuracy and sensitivity in disease classification. The study highlights how ViTs have 

proven to be particularly effective in identifying early-stage maize diseases, such as rust and blight, which are crucial 

for mitigating crop loss and improving overall yield. Traditional methods, which primarily rely on Convolutional 

Neural Networks (CNNs) or manual inspection, often struggle with the complexity and variability of agricultural 

images. In contrast, ViTs leverage self-attention mechanisms to capture long-range dependencies in images, enabling 

them to detect subtle disease patterns that may otherwise go unnoticed, especially at the early stages when intervention 

is most effective. 

Through extensive experimentation, ViT models demonstrated superior performance in terms of key metrics such as 

accuracy, precision, recall, and F1-score. The ability to achieve near 97% accuracy in classifying different maize 

diseases underscores the model’s potential for real-world deployment in agricultural environments. Moreover, ViTs 

showed a significant improvement in recall and precision compared to traditional methods, ensuring that both the 

identification of diseased plants and the minimization of false positives are optimized. This high level of precision and 

recall makes ViTs particularly useful in large-scale agricultural systems where disease detection must be both accurate 

and timely to avoid significant crop losses. 

ViTs also excel in handling large, diverse agricultural datasets, a common challenge in modern farming where disease 

variability across geographical locations and environmental conditions is high. The use of ViTs allows for the analysis 

of large-scale datasets without sacrificing performance, which is a notable advantage over older models. These models 

are not only capable of classifying diseases with greater precision, but they can also adapt to new disease patterns as 

more data is introduced, improving their effectiveness over time. 

However, despite the promising results demonstrated in this study, there remain significant challenges that need to be 

addressed for the widespread adoption of ViTs in real-time agricultural monitoring. One of the primary concerns is the 

computational intensity of training and deploying ViT models, particularly in resource-limited environments such as 

rural farms or mobile devices. ViTs require substantial computing power, which may be unavailable in remote 

locations where computational resources are limited. In such cases, there is a need for optimizations that allow the 

model to be more lightweight and computationally efficient without compromising its performance. 

Future advancements in this field should focus on optimizing ViTs for real-time deployment in such resource-limited 

environments. One promising approach is the development of lightweight ViT models that can run on edge devices, 

such as mobile phones or embedded systems used in smart farming. These models would need to be efficient in terms 

of both computational resources and power consumption, enabling them to provide accurate disease detection even in 

low-power scenarios. Additionally, incorporating model compression techniques, such as pruning, quantization, or 

knowledge distillation, could significantly reduce the computational load, making ViTs more feasible for deployment 

in field conditions. 

Furthermore, combining ViTs with other machine learning techniques, such as Convolutional Neural Networks 

(CNNs), could further enhance detection accuracy and reduce computational load. CNNs are highly effective in 

extracting local features, while ViTs excel at capturing global dependencies. By combining the strengths of both 

models, a hybrid architecture could offer improved performance, making it more suitable for a wider range of 

agricultural applications. Hybrid models could also address the trade-offs between accuracy and efficiency, ensuring 

that disease detection remains fast and accurate even with limited resources. 

Another promising avenue for improvement is the application of transfer learning. Transfer learning enables ViT 

models to leverage pre-trained weights from large, general-purpose datasets, allowing them to be fine-tuned on 

smaller, domain-specific agricultural datasets. This approach could help alleviate the need for vast amounts of labeled 

data, which is often a bottleneck in agricultural settings. By reducing the requirement for large datasets, transfer 

learning could facilitate the broader adoption of ViTs in agricultural disease detection. 
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The integration of real-time data from IoT sensors, drones, or satellites could also enhance the utility of ViTs in the 

field. These sources of data could provide up-to-date information on environmental conditions, plant health, and 

disease progression, which would improve the accuracy of disease predictions and help farmers make informed 

decisions. The combination of ViTs with other technologies, such as Internet of Things (IoT) devices, could lead to 

fully automated disease detection systems that provide timely alerts and actionable insights to farmers, helping them 

reduce crop losses and optimize their agricultural practices. 

In conclusion, while Vision Transformers represent a significant advancement in maize disease detection, ongoing 

research is needed to address the challenges of computational efficiency and data requirements for real-time 

applications. The future of ViTs in agriculture lies in developing more efficient models, optimizing them for 

deployment on edge devices, and integrating them with other technologies, such as CNNs, transfer learning, and IoT 

systems. As these technologies evolve, ViTs have the potential to revolutionize disease monitoring and management 

in agriculture, enabling farmers to improve crop health, reduce losses, and contribute to greater food security 

worldwide. 
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