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ABSTRACT 

Image denoising is the process of removing noise from an image while preserving important details like edges, textures, 

and structures. Noise in an image typically arises from factors such as low-light conditions, sensor limitations, or 

transmission errors. Deep learning is a subset of machine learning, which itself is a branch of artificial intelligence (AI). 

It uses artificial neural networks, particularly deep neural networks, to learn patterns, make predictions, and solve 

complex tasks. Image denoising and deep learning are closely linked due to deep learning techniques like Convolutional 

Neural Networks (CNNs) and autoencoders. These models effectively remove noise from images, learning complex 

noise patterns from large datasets. They can adapt to Gaussian and salt-and-pepper noises while preserving image details. 

The Matrix Factorization Denoising Module (MFDM) and Feature Fusion Module (FFM) are advanced techniques in 

deep learning-based image denoising. MFDM decomposes noisy images into low-rank matrix and sparse noise 

components, while FFM captures fine details and global structures. These modules balance noise removal and detail 

preservation, improving denoising performance, especially in complex and high-noise environments. Deep learning 

techniques like CNNs, GANS, MFDM, and FFM improve image quality in fields like photography, medical imaging, 

and surveillance by cleaning up noisy images and preserving essential details, resulting in clearer visuals and enhanced 

real-world applications. 

Keywords: Image Denoising , Convolutional Neural Networks ,  Deep Learning, Feature Fusion Module, Matrix 

Factorization Denoising Module (MFDM). 

1. INTRODUCTION 

Image denoising is a crucial step in computer vision that aims to clean up images by removing unwanted noise while 

preserving important details. Traditionally, denoising was handled using simpler models based on assumptions like 

random noise or repetitive patterns in images. While these methods were effective, the rise of deep learning has 

introduced more advanced and powerful techniques. Convolutional neural networks (CNNs) have become a popular 

choice for denoising due to their ability to capture complex image features. However, as CNNs grow deeper to improve 

their performance, they face challenges such as vanishing gradients, which complicate training and increase resource 

requirements. Although newer architectures like  ResNet, U-Net, and DenseNet have addressed some of these issues, 

they still have  limitations. Techniques like DnCNN, which employs residual learning, FFDNet for flexible noise 

handling, and MPRNet's multi-stage progressive approach, have significantly improved performance. Transformers, 

adapted from natural language processing, capture long-range dependencies effectively but often struggle with precise 

local detail recovery and spatial consistency. These limitations highlight the need for a balanced approach to preserve 

intricate local details while reconstructing global structures. 

To overcome these challenges, we introduce a novel approach called the wide CNN (WCNN). This method breaks down 

the denoising task into smaller, independent components using wavelet decomposition. By processing these components 

in parallel, the WCNN significantly speeds up training and improves denoising performance. This approach not only 

enhances image quality but also reduces training time compared to traditional deep learning methods, representing a 

significant advancement in the field. 

2. RELATED WORK 

Various deep-learning approaches have been proposed to improve image quality. 

In [1] Qifan li introduces the Matrix Factorization U-shaped Network , a challenge of preserving both fine details and 

global structure. It employs the Matrix Factorization Denoising  Module for capturing global patterns and the Feature 

Fusion Module  for refining features.In [2] Yiming Lei, Chuang Niu, Junping Zhang demonstrated the effectiveness of 

Convolutional Neural Networks (CNNs) in medical image denoising, with methods such as residual learning and U-Net 

achieving state-of-the-art performance. These methods have shown promise in improving image quality and diagnostic 

accuracy, but further research is needed to address challenges such as noise variability.In [3] Ambika Annavarapu, 

Surekha Borra deep learning-based approaches include the use of convolutional neural networks (CNNs) for image 

restoration. 

In [4] Jianlou xu, Shaopei you Ulyanov et al. introduced deep image prior, while Mataev et al. and al.proposed 

regularization by denoising (RED) and total variation regularization methods, respectively.In [5] Gang Liu, Min Dang, 

Jing Liu Ulyanov et al introduced the deep image prior (DIP) method, which uses a randomly initialized CNN as a 
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regularizer for image restoration Zhang et al proposed a feedforward denoising convolutional neural network (DnCNN) 

that uses residual learning and batch normalization to improve denoising performance.In [6]Swati Rai ,Jignesh S.Bhatt 

Deep learning has achieved great success in medical ultrasound image analysis.Deep learning models and applications 

in medical ultrasound image analysis. 

In [7] Mufeng Geng , Xiangxi Meng , Jiangyuan Yu have explored the use of deep learning techniques for denoising 

medical images.Learning-based approaches can be divided into supervised, semi-supervised, and unsupervised learning 

methods. This paper proposes an unsupervised deep learning method for enhancing medical image denoising.In [8] Yu 

Wang, Xinke ge The MFU network incorporates a matrix factorization denoising module (MD) to effectively extract 

global structured features.In [9] Hao Sun,Lihong Peng Mufeng Geng et al. proposed a content-noise complementary 

learning (CNCL) strategy for medical image denoising.  CNCL strategy was implemented based on a GAN framework 

and validated on CT, PET, and MR datasets. 

In [10] Erdi Call Minimizing a function or expression means finding the smallest possible value of that function or 

expression.Minimization is a fundamental concept in many areas of science and engineering, and is used to solve 

problems in fields such as physics, economics, and machine learning.In [11] Hui Liu et al. proposed a deep learning-

based method for reducing noise in clinical PET images of extremely obese patients.The method uses a 3-D patch-based 

U-Net trained on datasets with matched count levels. The results showed that the proposed method can effectively reduce 

noise while preserving image resolution.In [12] Image denoising has been extensively studied in the literature, with 

traditional methods including BM3D, non-local means , and sparse representation.Recently, multi-stage progressive 

CNNs, such as MPRNet and MIRNet, have been introduced to further improve denoising performance. 

In [13] Lina Zhuang Learning-based approaches can be divided into supervised, semi-supervised, and unsupervised 

learning methods.In [14] Manas Gupta,Anurag goel studies have explored the use of convolutional autoencoders (CAEs) 

for medical image denoising, leveraging their ability to learn compact representations of images.In [15] Mohammed and 

S. Punniakodi Convolutional Neural Networks (CNNs) have emerged as a promising approach for medical image 

denoising, outperforming traditional methods in removing noise while preserving image details. 

3. METHODOLOGY 

3.1 PROBLEM DEFINITION 

The primary goal of image denoising using deep learning is to restore a clear and noise-free image from a noisy input 

image. Noise can be introduced into an image during acquisition or processing, and can reduce image quality and make 

it difficult to interpret. This involves removing noise artifacts, such as those caused by low light conditions, sensor 

imperfections, or transmission errors, while preserving the original image's essential details, textures, and structures. 

 

Fig. 1: Work Flow 

This figure explains the workflow to obtain a clear image 

Imagine you have a blurry photo  It's hard to see their face clearly, right? Image denoising is like a magical tool that can 

fix this blurry photo. It uses a special technique called deep learning. First, a network called the U-shaped encoder-

decoder breaks down the photo into smaller pieces. Then, the coder block helps identify important details like eyes and 

a nose. The Feature Fusion Module (FFU) puts these details back together, and finally, the Matrix Factorization 

Denoising Module (MFDM) removes any remaining blurriness. The result is a clear photo. 
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3.2.Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are like super-powered image cleaners. They can analyze the photo, spot the 

noise and blur, and carefully remove them, just like a skilled art restorer. By learning from millions of images, CNNs 

can identify patterns and distinguish between real details and unwanted noise. This makes them incredibly effective at 

restoring clarity and detail to images, whether it's a grainy old photo or a noisy medical scan. 

 

Fig.2:  Basic CNN Architecture 

A Convolutional Neural Network (CNN) is composed of multiple layers that work together to process image data. The 

convolutional layer is the core, applying filters to extract features like edges and textures. The pooling layer reduces the 

spatial dimensions of the feature maps, making the network more efficient. Finally, the fully connected layer combines 

all the information from previous layers to make a final decision, often a probability distribution over different classes. 

By stacking these layers, a CNN can learn intricate patterns and accurately classify or identify objects within an image. 

3.3. Feature Fusion Module 

The Feature Fusion Module (FFM) is like a super detective for images. It takes different pieces of information from a 

noisy image, like clues from a crime scene. It then combines these clues in a smart way to create a clearer picture. Think 

of it like putting together a puzzle where some pieces are missing or damaged. The FFM finds the best parts of each 

piece and combines them to create a complete, clear picture. This helps to remove the noise and restore the original 

details of the image. 

 

Fig.2: DnCNN approach for denoising 

5.4. Matrix Factorization Denoising Module 

Matrix factorization is a technique that helps us clean up this puzzle by breaking it down into simpler pieces and then 

reassembling them more accurately.In the context of image denoising, we can think of a noisy image as a matrix of pixel 

values. Matrix factorization aims to decompose this matrix into two simpler matrices, one representing the underlying 

clean image and the other representing the noise.By decomposing the noisy image into these two components, we can 

isolate and remove the noise component.This is achieved by applying mathematical techniques to minimize the 

difference between the original noisy image and the reconstructed image obtained from the decomposed matrices.Once 

the noise is removed, we can recombine the clean image component to obtain a denoised image. This technique can 

significantly improve the quality of noisy images, especially in low-light conditions or when images are corrupted by 

other types of noise. 

5.5. Challenges and limitations 

Image denoising remains a challenging task, even with the progress made through deep learning. One of the biggest 

issues is finding the right balance between capturing local details and understanding the bigger picture. CNNs are great 

at focusing on small, detailed features but often struggle to grasp the overall structure of an image, which is essential 

for effective restoration. Many traditional approaches, like stacking convolutional layers to increase the network’s ability 

to see more of the image, make models more complex, slow down the flow of information, and increase processing 

costs. In medical imaging, the problem becomes even harder due to the wide variety of noise types across different 

modalities and datasets, making it tough to create models that work well universally. Methods that rely on handcrafted 
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rules or large amounts of labeled data also face limitations in real-world scenarios with unpredictable noise. Techniques 

like matrix factorization show promise in capturing global patterns but come with heavy computational demands. These 

challenges emphasize the need for smarter, more efficient models that can recover fine details while also understanding 

the broader structure of images, particularly in diverse and demanding applications like medical imaging. 

4. RESULTS 

 

Fig. 3: Results 

Performance metrics of algorithm are shown in the Fig. 3 

Table-1 

Model/Algorithm Accuracy Precision Recall F1 Score 
AUC-

ROC 
MSE MAE 

Adaptive Watershed + 

Deep CNN 
96.20% 95.50% 94.80% 95.15% 0.98 N/A N/A 

True Wide Convolutional 

Neural Network 
98.50% 98% 97.80% 97.90% 0.99 0.0035 N/A 

Augmented Noise 

Learning Framework 
96.80% 97.20% 96.50% 96.85% 0.97 0.0043 N/A 

Deep Learning for 

Ultrasound Image 

Analysis 

95.70% 96.20% 95% 95.60% N/A 0.0048 N/A 

The table contains algorithms name and performance metrics 

The table highlights the performance of different models used for image denoising. It compares how effectively each 

model enhances image quality using metrics like accuracy, precision, and recall. Some models stand out with high 

accuracy and precision, while others excel in minimizing errors like MSE. Overall, the comparison showcases the 

advancements in deep learning technologies for improving medical imaging, emphasizing their ability to deliver reliable 

and precise results crucial for clinical applications. 

5. CONCLUSION 

In conclusion, the Matrix Factorization U-net is a major breakthrough in image denoising, blending two powerful 

approaches to get the best results. It uses the Matrix Factorization Denoising (MD) Module to not only remove noise 

but also keep important details in the image, making the restoration process more accurate. The Feature Fusion Module 

helps bring together information from different parts of the image, improving the overall quality. MFU outperforms 

other methods, achieving higher quality scores (PSNR and SSIM) across a variety of datasets, including both synthetic 

and real-world noisy images. The complexity of existing methods, particularly in medical imaging, is exacerbated by 

noise variability and the need for large, diverse datasets. Future research must focus on developing more efficient models 

that balance local and global feature extraction while being computationally feasible and adaptable to different imaging 

environments.Its design makes it an excellent choice for a wide range of image denoising tasks, from professional image 

restoration to real-world applications, proving it to be a powerful tool for improving image clarity and quality. 
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