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ABSTRACT 

The design and analysis of propellant grain configurations is a crucial step in the design of solid propellant rocket motors. 

This is because the performance prediction relies on accurate calculations of grain geometrical properties. Knowing the 

grain's burn back phases makes solid rocket motor performance prediction a breeze. This research looked into grain 

burn back analysis for solid rocket motors using 3-dimensional star grain geometries. Using CATIA's parametric 

modeling capabilities and the dynamic factors that define the intricate arrangement, the design process begins. The grain 

configuration is defined by the initial geometry, which is a surface. At each web increment, new surfaces are made and 

geometrical parameters are calculated to ensure grain burn back. To determine the interior ballistics, the equilibrium 

pressure approach is employed. Using this method for preliminary grain configuration design is a breeze, and it works 

with any complicated geometry. This paper calculates the variation of thrust with respect to time as the propellant in the 

igniter burns, reducing the area of the remaining propellant and causing a change in pressure in the Solid Rocket Motor 

with respect to time. This change in pressure causes a variation in mass flow rate.The remaining grain area in the Solid 

Rocket Motor is determined by utilizing MATLAB with a 0.05 mm half set. We use MATLAB to double-check the 

CATIA numerical findings and make sure we're looking at the right area of the remaining propellant. 

Keyword-: Solid Rocket Motor, MATLAB, CATIA, geometrical, surface, pressure  

1. INTRODUCTION 

Background of study 

In order to complete the rocket mission, a large number of parametric studies are conducted during the first phase of 

developing the solid propellant rocket motor. While evaluating potential solutions for propellant charge shape, motor 

configuration, and type, production issues, requests for specific motor performances, and exploitation conditions are 

taken into account. Despite the thoroughness of these first project investigations, it is not recommended to parametrically 

treat all the relevant aspects from a practical standpoint. In its place, ideal construction is selected following an initial 

evaluation of potential alternatives. It goes through more detailed analysis after that. In order to ascertain if the motor 

will meet the criteria required for solid propellant rocket motor design, this analysis thoroughly evaluates the following: 

propellant type, propellant grain shape, and motor structure. While considering additional specific constraints, designers 

of solid propellant rocket motors primarily aim to define the propellant grain that will allow the necessary change of 

thrust vs. time, necessary for the rocket mission to be fulfilled (envelope, mass, etc.). The two-tiered investigation of 

solid propellant rocket motors requires evaluation of the following four fundamental processes regardless of level. 

Evaluation of various propellant kinds and configurations is the first stage. Establishing the propellant grain geometry 

that meets the requirements of internal ballistics and structural integrity, Estimate of erosive burning and possible 

burning process instability, Determination of grain structural integrity during ignition pressure increase. 

The warhead of any weapon cannot be delivered to its target without some means of propulsion. The criteria for vehicle 

design and the propulsion systems that send weapons hurtling toward their targets are the subjects of this chapter's 

analysis. Newton defined the fundamental basis of propulsion in his Third Law of Motion: An equal and opposite 

reaction is there for every action. A reactive force acting in the opposite direction is the cause of every forward 

acceleration or charge in motion. To advance, one must press one's backside down on the floor. One way that propeller-

type airplanes get forward is by forcing the airflow through which they're traveling to turn backwards. A rocket or jet-

propelled aircraft moves forward in response to the movement of a mass of gas ejected rearward at great speed. It is 

possible to release a gas, liquid, or solid as a propellant force, which releases its energy in the opposite direction of the 

intended trajectory, causing the propelled body to accelerate according to a predefined formula. Grain shapes are utilized 

for solid propellants. Any one propellant particle, no matter how big or little, is considered a grain. There is a direct 

correlation between the size and form of a propellant grain and the burn time, gas output, and thrust vs. time profile. 

One of the two main variables in mass flow is burn rate, although there are several elements that affect burn rate 

specifically. The propellant's composition is crucial, but already decided upon. In addition, the propellant mass as a 

whole often has the same composition. When conducting experiments to determine the propellant composition's 

qualities, we can ignore most of them since they won't impact the performance variables. Thus, the burn rate is very 

predictable in the absence of other significant factors. The combustion chamber pressure and the propellant's initial 

temperature are the two most important factors influencing the burn rate. 
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Grain Geometry: 

When discussing solid rocket motors, the term "grain geometry" is used to describe the actual form and arrangement of 

the solid propellant within the rocket motor housing. When it comes to the rocket's thrust profile, burning characteristics, 

and overall performance, grain geometry is king. There are a variety of grain geometries utilized in solid rocket motors, 

and each one has its own set of benefits and uses. Considerations like as cargo capacity, desired altitude, and thrust-time 

profiles dictate the precise grain geometry to be used for the rocket flight. Possible configurations include double anchor, 

star grain, and others. The overall rocket design must take into account the benefits and drawbacks of each geometry. 

Classification of Grain Geometry & their uses: 

Star Grain Configuration: 

One design for solid rocket propellant grain is the star grain, which is characterized by numerous perforations or channels 

inside the grain that form a star shape. By manipulating the size, shape, and orientation of the channels in star grains, 

designers have the ability to alter the burn rate. Typical star grains have a central core with numerous radial channels or 

perforations radiating outward, giving them a star-like or asterisk-like cross-sectional structure. The pattern formed by 

these channels is reminiscent of a star's points. Its neutral burning properties make it the most widely utilized. 

 

Figure 1: Star grain cross section using Auto CAD 

Circular Grain Configuration 

A few solid rocket motors have a particular design that involves a circular grain geometry configuration. Circular grains, 

in contrast to star grains, which feature radial channels, have a more homogeneous and simple cross-sectional shape, 

looking like a disk or cylinder [6]. Burning occurs more equally throughout the full surface of round grains. 

 

Figure 2: Circular grain cross section using Auto CAD 

Double Anchor Grain Configuration: 

One particular grain shape utilized in solid rocket motors is the "double anchor" grain. The term "double anchor" is used 

to describe this design because it has two separate perforations or channels in the solid propellant grain that are 

symmetrical and shaped like an anchor [2]. With regard to its central axis, the grain exhibits symmetry. A balanced and 

symmetrical burning pattern is created by its two similar channels, which are often positioned opposite one other. 

 

Figure 3: Double anchor grain cross section using Auto CAD 
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Casing 

The combustion process occurs within a housing called a combustion chamber. This housing is designed to endure the 

extreme heat and pressure that are produced when the solid propellant is ignited. Metals such as titanium, aluminum, 

austenitic stainless steel, and T0T6. These materials can withstand temperatures of at least 650 degrees Celsius with 

ease (18) 

 

Figure 4: Stainless steel casing 

Nozzle: 

Nozzles are tubes with variable (and often asymmetrical) cross-sectional areas used to alter the shape and velocity of an 

outflow. There are two distinct kinds of nozzles: convergent and diverging. As they make their way towards the nozzle, 

the gases undergo a process that changes their chemical energy into kinetic energy.  The gases are expelled at high 

speeds via the nozzle. 

 

Figure 5: Mild steel nozzle 

Propellant: 

Propellants are chemical mixtures that, when ignited, burn at a high rate. Propellant primarily consists of fuel and an 

oxidizer. In order to burn fuel, an oxidizer is used. Varying the proportions of these two factors affect how quickly 

propellant burns. Fuel and oxidizer are combined to form the propellant that solid rocket motors use. The usual 

ingredients are powdered oxidizers like ammonium perchlorate and powdered metals like aluminum. 

Rocket Candy 

An informal way of referring to "sugar propellant" or "sugar rocket propellant" is "rocket candy," which is a form of 

homemade or amateur rocket propellant. Because of its shape and texture, it is commonly referred to as "candy" [3]. 

The fuel for rocket candies is usually a combination of powdered sugar (sucrose) and an oxidizer (KNO3), the most 

prevalent of which is potassium nitrate. 

 

Figure. 6 Rocket Candy heating in the PVC  propellant electric pot. 
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2. LITERATURE REVIEW 

(Dong-Hui, 228AD) Grain designs that adhere to traditional methods typically include human intervention in order to 

determine the optimal geometrical parameters to enhance grain performance and fulfill flight mission specifications. To 

optimize the design of propellant grains for solid rocket motors, this paper presents an integrated architecture. 

(Yücel, 2015) Finding the grain geometry parameters that maximize the total impulse parameter while satisfying the 

limitations of chamber pressure and propellant mass and an objective thrust versus time profile are two examples of 

optimization issues that these methods are used to. 

(Kumar, 2014) During the design phase, the intricate configuration is defined by dynamic variables, which are used in 

CATIA software for parametric modeling of the geometry. 

(Püskülcü, 2004) The grain geometry's burn area change can be derived from the analysis of these geometries. The 

solid propellant rocket motor's performance is attained with the use of this data and internal ballistics characteristics. 

Rocket motor tests are conducted to confirm the results of this investigation. 

(Hojat Ghassemi, 2002) The motors made from a combination of these three primary grains have very distinct interior 

structures. All tests utilized a propellant that was 81% solids composite and based on polyurethane. 

(YILDIRIM, 2005) By assuming constant pressure along the motor, this study analyzes and predicts pressure time 

histories for some of the more traditional two- or three-dimensional grain burnbacks. An experimental static hybrid 

rocket test bench developed for this study was used to conduct the characterisation experiments. 

(Horowitz, 2008) The grain design influences the insulating mass and volumetric loading, which are represented by the 

following parameters: web percent, thrust profile, and length-to-diameter ratio. 

(Hejl, 1995) Not only is this tool easy to use, but it also has generic capabilities for managing burning rate information 

that is dependent on space. 

(Kamran, 2009) To determine how manufacturing differences affect the optimal solution's sensitivity to uncertainties 

in design parameters, a Monte Carlo sensitivity analysis was performed. 

(Michael A. WillcoX, 2007) Reliable internal ballistics predictions with appropriate simplified flowfield models can be 

achieved with sufficiently accurate models of dynamic burning and erosive burning, according to the results. This allows 

for significant reductions in computation time compared to 3-D, multiphase reacting flow simulations. 

(A and A. Ulas b ET.AL, 2008) Tests using subscale ballistic rocket motors were carried out in this study to confirm 

the model's predictions. Modifications were made to an existing rocket motor to improve its insulation, ignition delay, 

and sealing. 

(K Obula Reddy, 2013) During the design process, the intricate arrangement is defined by dynamic variables in 

computer-aided design (CAD) software, which allows for parametric modeling of the geometry. 

(D. Scott Stewart, 2007) The results show that for time scales of the complete motor burn, this method provides 

sufficient accuracy with reasonable computation time. The final code, Rocgrain, integrates with existing internal flow 

codes and enables motor grain design with commercially available, user-friendly CAD applications. 

(Lorenzo Casalino∗, 2011) The results demonstrate that tiny launchers could benefit from a hybrid-propellant third 

stage, which offers comparable cost and performance to an all-solid rocket. It turns out that using quadrangular ports is 

better than using triangle ports. 

A very good match is achieved with static test results, and the code is validated with both published experimental 

findings and data for solid rocket motors of tactical and strategic missiles. Code output includes pressure-time (p-t) 

curve, axial flow parameters, and mesh files with geometries that can be used as input to computational fluid dynamics 

(CFD) programs. 

(Ulas, 2008) The grain geometry's burn area change was derived from the analysis of various geometries. The solid 

propellant rocket motor's performance was attained in terms of motor pressure using this data in conjunction with 

internal ballistic parameters. 

In other words, some star-aft motors can have their initial pressure spike effectively prolonged through erosive burning.  

(Urrego Peña, 2019) Reliable internal ballistics predictions with appropriate simplified flowfield models can be 

achieved with sufficiently accurate models of dynamic burning and erosive burning, according to the results. This allows 

for significant reductions in computation time compared to 3-D, multiphase reacting flow simulations. 

(Kumar, 2014) Parametric modeling of the geometry in CATIA software is used to define the complicated configuration 

through dynamic variables during the design process. A surface defining the grain configuration defines the initial 

geometry. 
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(Mohammed Akbar, 2024) This study delves into the topic of optimizing combustion chamber surface area and 

propellant volume through the use of finite element analysis and the differential calculus approach. 

(Ionel, 2020) Each geometrical parameter that defines the star port SRM grain section is shown to be important in the 

results. 

(Zafer Dursunkaya, 2015)Using optimization techniques, we maximize the total impulse parameter while keeping 

chamber pressure and propellant mass as constraints, and we determine the grain geometry parameters that fulfill an 

objective thrust versus time profile. 

(Stalin, 2020) To determine the interior ballistics, the equilibrium pressure approach is employed. When it comes to 

preliminary grain configuration design, the selected approach is simple enough to be applied to any complicated 

geometry. 

3. METHODOLOGY 

Experimental Details: 

Designing the propellant grain to enable the necessary change in thrust vs. time for the rocket mission's fulfillment is 

the major purpose, while other specific limitations such as envelope and mass are taken into account. Two tiers of solid 

propellant rocket motor analysis are now underway, with each tier requiring evaluation of the following four 

fundamental processes. 

• Assessment of several types of propellant types/configurations, 

• Defining the geometry of propellant grain which satisfies conditions of internal ballistics and structural integrity, 

• Approximate determination of erosive burning and potential instability of burning process, 

• Determination of structural integrity of the grain during time of pressure increase during ignition. 

Preliminary or first-level design analysis requires tools that are both user-friendly and straightforward. In most cases, 

basic computer programs are available, which provide basic initial results based on analytical models or diagrams. The 

final design of the propellant charge is completed on the second stage. Propellant grain design specialists use specialized, 

high-tech equipment for this work. Internal ballistics, fluid dynamics, continuum mechanics, and structural analysis are 

some of the physical processes modelled in 1D, 2D, or 3D computer programs. These models are based on finite 

difference or finite element approaches. They enable optimization or exact computations all the way to the definition of 

final geometry. 

It is crucial to perform laboratory testing on all components before manufacturing the final product. This ensures that 

the rocket engine meets all internal ballistic requirements and determines the burning law of the propellant, including 

erosive burning. The pressure time curve is the primary result of the experiment, which involves a rocket motor that is 

lying on a horizontal test stand and composite propellant. By attaching a pressure transducer to the rocket motor under 

test, we may examine its internal ballistics using the pressure time curve. During the erosive burning variables, this 

experiment will include erosive burning. (Pressure, burning rate, cross flow velocity, motor size, etc.), where L/D is a 

significant determinant in erosive burning [16].   

Data from computer-aided design (CAD) and mathematical programming (MATLAB) programs will be compared with 

experimental results. 

 

Fig. 7. Pressure time curve due to experimental data. 

The pressure time curve reveals that the igniter and erosive burning cause a pick at the start of burning. The first burn 

area, which is affected by grain form and flow velocity, determines the pressure inside the rocket motor. As the first 

stage of the star grain geometry burns, the pressure drops sharply; as the second stage burns, the pressure rises again; 

hence, the burning is progressive. Once the burning phase is complete, the silver phase will begin to burn. Here the 

pressure begins to drop and the burning area shrinks rapidly as well. 



 

www.ijprems.com 

editor@ijprems.com 

INTERNATIONAL JOURNAL OF PROGRESSIVE 

RESEARCH IN ENGINEERING MANAGEMENT 

AND SCIENCE (IJPREMS) 

(Int Peer Reviewed Journal) 

Vol. 04, Issue 11, November 2024, pp : 1593-1605 

e-ISSN : 

2583-1062 

Impact 

Factor : 

7.001 
 

@International Journal Of Progressive Research In Engineering Management And Science             Page | 1598 

4. PERFORMANCE PREDICTION 

Using the equations of mass conversation, ideal gas formulation, and ideal gas velocity, the simplified ballistic model 

is used to calculate the performance prediction. The pressure time curve shows the rapid change of pressure inside the 

rocket motor during burning [19].  

By inputting the propellant's thermochemical parameters, nozzle diameters, and performance efficiencies into a coding 

program, the pressure and thrust time curves may be calculated. 

A. MATLAB simulation 

The software can plot a pressure time curve and determine the star grain's performance. In order to determine the 

primary characteristics and performance of a solid propellant rocket engine, the program use SI units for 

computation. Rockets of all sizes are welcome to utilize the program. The P-T curve and erosive burning phenomena 

calculations are the program's primary functions. In order to easily calculate and determine the output with little 

mistake, we shall divide the web thickness into equal segments.  

By modeling the flow through the nozzle as isentropic and applying the theory of zero-dimensional frictionless 

compressible flow, the internal ballistic analysis is able to determine the proper chamber pressure that balances the 

continuity equation through iteratively establishing equilibrium pressures. The web thickness is divided into 

segments. The governing equation is solved for each segment, and the total mass generated is compared to the mass 

discharge through the nozzle. If the check fails, a new assumption is needed to obtain a solution for one instant in 

time. Liner between the head and nozzle end is considered the average burning rate. Along the combustion path, 

we presume a linear relationship between the burning rate and pressure at the head and nozzle ends. 

B. Numerical Solution Procedure 

Assuming all parameters are known at each increment of burning, the following methods are used to predict the 

pressure variation with time: 

1. For this phase, we iteratively find the Mach number (mn) at the nozzle end (mn = 0.6), and we accept the result 

when the difference between two subsequent values drops below 0.00000001. 

2. Determine the end-of-nozzle gas velocity (Un) in the chamber. 

3. Sections are formed by dividing the web thickness. 

4. Foretell the mass discharge rate and stagnation pressure. 

5. Find the head pressure and the nozzle burning rate (ph, rh, pn, rn) separately. 

6. Lenoir and Robillard's equation estimates the overall burning rate, which includes the erosive burning term, 

therefore we may determine the total burning rate. Using the Newton-Raphson approach, we are able to calculate 

the equation for the burning rate at the nozzle end. When the difference between two consecutive values drops 

below 0.000001, the answer is considered approved. 

7. Get the mas flow rate and dp/dy. 

8. Since the mass discharge and the mass created are not equal, we need to determine the new stagnation pressure. 

After that, keep going through steps 3–7 until the difference between two consecutive mass figures is somewhere 

around 1%. 

9. Find out how long the whole burning rate takes at this point. 

10. When the web thickness from the nozzle side reaches the motor casing, repeat steps 1 through 8. 

The model takes into account the conservation of mass, energy, and momentum, and is based on the fundamental gas 

dynamic and thermodynamic relationships. The majority of rocket motors undergo a three-stage evaluation of their 

pressure time histories: ignition, transient, quasi steady, and tail off transient. Each stage is treated independently.  

Through iteratively establishing equilibrium pressures, the internal ballistic analysis determines the proper chamber 

pressure that balances the continuity equation. This is done in accordance with the one-dimensional frictionless 

compressible flow theory, which assumes that the flow is isentropic in the nozzle.   

The solution of the governing equations for each segment can be obtained by splitting the web thickness into segments.  

If the check fails, a new assumption is needed to acquire the answer for one instant of time, and the total quantity of 

mass generated will be compared with the mass discharge from the nozzle. The calculation is carried out in two parts: 

at the grain's head and nozzle ends.  

It helps determine the gas velocity, temperature, and pressure at the grain's nozzle tip. The output is determined with 

minimum error by dividing the web thickness into equal parts. Assuming a linear relationship between the Mach number 

and the pressure and burning rate at the head and nozzle ends along the combustion path: 
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Where Mn is the Mach Number, Acr is the critical area, Ap is the port area, y is the specific heat ratio. 

 

where the stagnation pressure (pon), burning rate coefficient (a), and propellant density (Pp) are all variables C is a 

function of the specific heat ratio, n is the combustion index, and is the characteristic velocity. The burning area is 

represented by Ab. 

 

Where pn  is pressure at the nozzle 

 

 

 

 

 

Fig. 8. Pressure time curve of 2D star grain 
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When we look at the presented curve alongside the theoretical and experimental data, we can see that there isn't much 

of a discrepancy. This indicates that the program can investigate the pressure time curve with little error and solve the 

internal ballistic of 2D star grains with different geometries.  The theoretical calculation makes use of the phenomenon 

of erosive burning. The initial model to be developed based on heat transport was that of Lenoir and Robillard [20]. 

Two methods of gas-to-solid heat transfer were suggested in their mathematical model for predicting the consequences 

of erosive burning in solid propellant rocket motors:  

1-from the main burning zone, where pressure is the only variable and core gas velocity is irrelevant  

2-this method of calculating the entire burning rate (which is dependent on the gas velocity) from the hot combustion 

gases at the core is: 

 

 

Fig. 9. Comparison of 2D experiment and 3D calculation. 

Using 3D grain results in a decrease in pressure owing to a shift in the burning area, which improves performance inside 

the combustion chamber, as shown by the 

relation between the experimental 2D and theoretical 3D star grain curves above. 

 

Fig. 10. 2D and 3D calculated pressure time curve. 

Erosive burning causes a rapid transformation of any two-dimensional model into a three-dimensional one by increasing 

the burning rate at the grain end relative to its head. Therefore, we recommend using a 3D model since it allows for 

more precise burn back analysis of the grain, which in turn leads to more precise pressure estimation along the 

combustion chamber, whereas using a 2D model only yields inaccurate results (at least at the outset). 

 

Figure 11: Circular burn rate 
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Figure 12: Star burn rate 

 

Figure 13: Double anchor burn rate 

Theoretical Analysis 

Richard Nakka's solid rocket motor (SRM) design Excel sheet is used for the study, which helps to analyze nozzle shape, 

thrust, pressure, and temperature. 

Furthermore, a secondary confirmation is provided by an open motor configuration, which enables the entire 

experimental procedure to be run in a variety of environments. After that, the ideal range is chosen and confirmed.  

The parameters that indicate the outcome of the design, as shown in Table I, are, 

Table :1  Result Parameters From Srm Excel Sheet 

 

 

Fig.14 Thrust vs Time graph By SRM Excel Sheet 
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TABLE 2: Result Parameters From Open Rocket 

 

Ongoing analysis identifies the optimal range for this dimension, and we assess our specified burn  profile 

characteristics. Based on this analysis, the thermal insulation layer is selected accordingly. 

 

Fig. 15 Open Motor Simulation 

This data gives a brief of how the motor is going to perform both data from both simulations are not exactly correct 

enough but its close enough in case of burn time and specific impulse, total  impulse. 

3.2 Combustion Chamber – CPVC 

 

Fig. 16 Combustion chamber CAED model 

A 5 mm thick CPVC material is used to construct the combustion chamber, which includes a 367 mm schedule 40 SDR 

11 pipe. Its starting operating pressure is 70 bars, and it is designed to operate under typical temperature circumstances. 

In our particular case, the temperature increases quickly a few seconds into the burn because the motor is built for a 4-

second burn, yet for some reason the CPVC can withstand high temperatures.  Consequently, once the insulator has 

burned away, the inner wall will experience increased temperatures.  Throughout this stage, the pressure inside the 

chamber is kept at 350 psi. 

3.3 Upper Closer CPVC 

 

Fig. 17. Upper Closer 3D Model 



 

www.ijprems.com 

editor@ijprems.com 

INTERNATIONAL JOURNAL OF PROGRESSIVE 

RESEARCH IN ENGINEERING MANAGEMENT 

AND SCIENCE (IJPREMS) 

(Int Peer Reviewed Journal) 

Vol. 04, Issue 11, November 2024, pp : 1593-1605 

e-ISSN : 

2583-1062 

Impact 

Factor : 

7.001 
 

@International Journal Of Progressive Research In Engineering Management And Science             Page | 1603 

 

Fig.18 Upper Closer in Physical and Weighted 

Step one is to mark the perimeter you want to cut, then use a hose clamp to secure the cut. After that, it's boiled for 5 

minutes to further secure the assembly, and then the process is repeated until both joints are securely fastened.  

The next step is to use 743 quick glues and PVC powder to attach the sides. The combustion chamber's diameter is the 

basis for the bottom side's construction from flattened CPVC. Pouring Araldite epoxy adhesive from above strengthens 

the structure and stops leaks. 

Assembling 

Screwing in the nozzle and applying CPVC glue are the first steps in integrating the motor. After inserting the insulator 

and fuel grains, the top closure is attached with CPVC glue, screwed in, and then the fuel grains are entered. 

5. RESULT & DISCUSION 

An SD card is used to save the data received from the motor's static test, which is conducted on a horizontal static test 

pad. 

TABLE 3 : Result From Static Test 

S/N Parameters Values Units 

1 Propellant Grain Mass 0.4 Kg 

2 Max Thrust 189.1474 N 

3 Average Thrust 102 N 

4 Burn Time 4 S 

5 Total Impulse 394 N-sec 

6 Specific Impulse 98.5 sec 

 

Fig:19 GRAPH I Static Test Result (Thrust, N vs Time, Sec) 

The differences between the theoretical and real results are clear, and they are mostly caused by combustion loss, nozzle 

erosion, and mistakes made in the static test pad. With an average thrust of 102 N, the burn time has been increased 

from 1.1 seconds to 4 seconds. Along with a drop in combustion efficiency to0.7, total impulse is also reduced. 

Notwithstanding these discrepancies, the data yields highly congruent numbers. There is a drop in chamber pressure 

because the nozzle is greatly eroded by the increased mass flow rate. More intense combustion occurs in the top part of 

the convergence zone inside the combustion chamber. 
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6. CONCLUSION 

An essential part of designing and calculating a solid rocket motor is doing a grain burn back study.  

Several experimental methods can be used to compare the results and data obtained from this work, which is based on 

our simple three-dimensional burn back analysis method.  In order to confirm the theoretical answer, the MATLAB 

software compares the experimental results with the 2D star grain geometry's pressure time curve. Because of the 

assumptions made in the theoretical answer for simplicity computation, the discrepancy is tolerable. The burn back 

analysis and the area burning in both 2D and 3D star grain geometries are investigated using CAD drawings.  

In the course of the theoretical procedure, the erosive burning happens.  As the pressure inside the combustion chamber 

lowers during burning, the 3D model's performance improves with respect to the pressure time curve. If you want to 

estimate the pressure along the combustion chamber with less room for error, a 3D model is your best bet for burn back 

study of the grain.  Different 2D and 3D star grain geometries can have their pressure time curves and internal ballistics 

computed and studied using this MATLAB software. The rate at which a propellant burns depends on the grain shape, 

which is something we are aware of. Variations in grain size also influence the rocket's thrust and burn rate. A solid 

rocket motor's star grain design yields the optimal burn rate and thrust vs time graph with neutral burning when tested 

with different grain cross sections.  
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