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ABSTRACT 

This systematic review investigates the current land- scape of student performance prediction by integrating socio- 

economic and behavioral data with machine learning techniques. The review examines advancements, common datasets, 

method- ologies, and limitations in predictive models across various educa- tional settings. Ten selected papers provide 

insight into how socio- economic and behavioral data enhance the predictive accuracy of models, particularly using 

machine learning algorithms like Random Forest and Support Vector Machines (SVM). Future research directions include 

expanding datasets and incorporating real-time behavioral data for more robust predictions. 
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1. INTRODUCTION 

In recent years, predicting student performance has become a focal point in educational research, driven by the increasing 

availability of large datasets from educational systems. Uni- versities and educational institutions are continuously seek- 

ing methods to improve student outcomes, reduce dropout rates, and provide timely interventions for at-risk students. 

Traditionally, models for predicting student performance were based largely on academic data, such as exam scores, GPA, 

or assignment grades. However, these models often overlook the complex socio-economic and behavioral factors that 

influence student success. Socio-economic data such as family income, parental education level, and financial aid status, 

combined with behavioral data like attendance patterns, online course engagement, and participation in class discussions, 

offer a more comprehensive view of a student’s academic journey. 

The integration of socio-economic and behavioral data into machine learning models has shown significant promise in 

enhancing predictive accuracy. This shift towards a more holistic approach is especially important for identifying at-risk 

students who may face challenges unrelated to their academic abilities. For instance, studies have demonstrated that 

students from lower socio-economic backgrounds are often more likely to face academic difficulties due to external 

pressures such as financial instability or lack of educational resources [1][5]. Similarly, students who display low levels 

of engagement in learning management systems (LMS) or have irregular attendance are more likely to perform poorly, 

regardless of their prior academic achievements [3][9]. 

In this systematic review, we focus on the impact of incorporating socio-economic and behavioral data into ma- chine 

learning models for student performance prediction. We explore the various machine learning algorithms used, such as 

Random Forest, Support Vector Machines (SVM), and Neural Networks, and examine their effectiveness in predict- ing 

student performance. Additionally, this review addresses the challenges and limitations of using non-academic data, 

including privacy concerns and data integration difficulties, which can affect the generalizability and ethical implications 

of these models. 

Several recent studies have employed machine learning techniques to improve student performance prediction by 

integrating socio-economic and behavioral data. For example, the use of Random Forest and ensemble learning techniques 

has been shown to provide higher accuracy in predicting at-risk students compared to traditional models based on academic 

performance alone [2][6][9]. In many cases, the inclusion of socio-economic factors such as family background has 

proven to be a critical predictor of student success, highlighting the need for more inclusive predictive models that go 
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beyond academic metrics [3][10]. 

Moreover, the incorporation of behavioral data, particularly 

in online learning environments, offers early indicators of potential academic failure. By analyzing LMS logs, student 

interactions, and participation in discussion forums, predictive models can identify disengagement at an early stage and 

provide timely interventions [4][9]. This approach is especially relevant in the post-pandemic educational landscape, where 

online and blended learning environments have become more prevalent, requiring educators to adapt to new forms of 

student engagement monitoring [8][10]. 

The need for early interventions has never been more critical, with studies showing that students identified as at- risk early 

in their academic careers are more likely to improve their performance with targeted support [3][7]. As educational 

institutions increasingly embrace data-driven decision-making, integrating diverse data sources—both academic and non- 

academic—will be essential to developing more accurate, fair, and actionable predictive models. This review synthesizes 

the current research in this area, highlighting the potential for socio-economic and behavioral data integration to 

revolution- ize student performance prediction models. 

2. RESEARCH METHODS 

A. Research Questions 

In this systematic review, the focus is on addressing the following research questions: 

1) What machine learning models are most effective in predicting student performance when socio-economic and 

behavioral data are integrated? This question ex- amines the performance of different machine learn- ing models—

ranging from traditional classifiers like Support Vector Machines (SVM) to ensemble learning techniques like 

Random Forest and newer approaches such as attention-based models. Understanding which algorithms are best suited 

to leverage non-academic data sources will highlight the most promising approaches for future work. 

2) How do different types of data sources (e.g., Learning Management System (LMS) logs, socio-economic data, 

demographic information) influence the accuracy and ro- bustness of student performance prediction models? This 

question seeks to understand the relative contribution of various data types and the benefits of integrating them with 

academic performance data. 

3) What are the main limitations and challenges in using socio-economic and behavioral data for student 

performance prediction? The inclusion of non-academic data can introduce challenges related to data quality, privacy 

concerns, model interpretability, and ethical con- siderations. This review seeks to identify these obstacles and explore 

potential solutions. 

B. Search Strategy 

A comprehensive search strategy was designed to iden- tify the most relevant studies for this review. A variety of 

academic databases, including IEEE Xplore, ScienceDirect, and SpringerLink, were utilized to ensure a broad scope 

of research materials. The search terms used included: ”stu- dent performance prediction,” ”machine learning,” ”socio- 

economic data,” ”behavioral data,” ”educational data mining,” and ”learning analytics.” These terms were used both 

individ- ually and in combination to capture relevant literature. The timeframe for the review was limited to studies pub- 

lished between 2022 and 2024, focusing on recent advance- ments in the field. This allowed for an up-to-date under- 

standing of the current methodologies and technologies being implemented in educational data mining. Only peer-

reviewed journal articles and conference papers were considered, ensur- ing a focus on high-quality empirical research. 

To ensure relevance, an initial screening was performed based on the title and abstract of each paper. Studies that focused 

solely on academic data, without any integration of socio-economic or behavioral factors, were excluded. Arti- cles that 

presented theoretical frameworks without empirical validation were also excluded. The remaining papers were subjected 

to a full-text review to confirm their inclusion in this systematic review. 

C. Study Selection Criteria 

The selection criteria for this systematic review were care- fully designed to ensure that the studies included were both 

relevant and of high quality. The criteria were as follows: 

1) Inclusion of machine learning models: Only studies that applied machine learning models to predict student 

performance were included. These models could range from simple classifiers like Logistic Regression to more 

advanced models like Neural Networks and ensemble methods like Random Forest. 
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2) Incorporation of socio-economic and behavioral data: The key focus of this review was on the integration of non-

academic data, such as socio-economic factors (e.g., family income, parental education) and behavioral data (e.g., 

student engagement, LMS activity). Studies that focused purely on academic data were excluded. 

3) Empirical studies: Only studies that presented actual case studies or empirical research in educational settings were 

considered. This ensured that the findings were based on real-world data and not purely theoretical models. 

4) Publication date: Only studies published between 2022 and 2024 were included to capture the most recent 

advancements in the field. 

5) Study relevance: Studies were selected based on their relevance to student performance prediction, with a focus on 

those that incorporated diverse data sources to improve the prediction of at-risk students. 

Ultimately, ten studies met these criteria and were included in the final analysis for this systematic review. 

3. RESULTS 

A. Common Datasets Used 

Across the ten studies, the use of Learning Management System (LMS) logs and Student Information Systems (SIS) 

data was ubiquitous. These datasets typically include stu- dent demographics, academic performance records (e.g., GPA, 

exam scores), and behavioral data (e.g., attendance, participa- tion in online discussions). In some cases, additional socio- 

economic data, such as family income, parental education level, and scholarship status, were integrated into the models to 

enhance predictive accuracy [2][5][9]. For example, the Open University Learning Analytics Dataset (OULAD) was 

frequently cited as a rich source of data, with studies leveraging its detailed LMS logs to analyze student interaction 

patterns and predict academic outcomes [1][9]. Other institutional datasets, such as those from Purdue University, also 

played a crucial role in providing longitudi- nal data for tracking student performance over time [6][7]. Additionally, some 

studies relied on smaller datasets from individual courses or universities, which provided insight into specific contexts but 

limited generalizability [8][10]. 

The types of data collected can be categorized as follows: 

• Academic data: GPA, exam scores, assignment grades. 

• Behavioral data: Attendance records, online activity logs, submission times for assignments. 

• Socio-economic data: Parental education, family income, geographical location, access to technology. 

• Engagement data: Participation in discussion forums, clicks on LMS content, time spent on learning activities. 

B. Machine Learning Models 

Several machine learning models were employed in the reviewed studies, with varying degrees of success. The most 

commonly used algorithms included: 

• Random Forest (RF): This model was highlighted in several studies for its ability to handle large datasets with 

high-dimensional features. Random Forest was par- ticularly effective in predicting at-risk students, with one study 

achieving an accuracy of 98.4% when using both academic and socio-economic data [2][9]. 

• Support Vector Machines (SVM): SVM was frequently used for its robustness in classification tasks. While it per- 

formed well in predicting academic performance, studies showed that its effectiveness improved when behavioral and 

socio-economic data were integrated [3][6]. 

• Neural Networks (NN): Some studies applied Neural Networks to capture complex, non-linear relationships 

between different data sources. However, the performance of Neural Networks varied, with some models struggling to 

outperform simpler models like Random Forest in certain contexts [7][10]. 

• Ensemble learning techniques: A hybrid approach, combining multiple machine learning models, was also 

explored. These ensemble methods often outperformed individual models by leveraging the strengths of different 

algorithms, particularly when predicting performance in large-scale datasets [4][8]. 

Overall, the integration of socio-economic and behavioral data significantly boosted the accuracy of these models. The 

best- performing models were able to identify at-risk students early, allowing institutions to provide timely 

interventions [2][6][9]. 

C. Impact of Socio-Economic and Behavioral Data 

The inclusion of socio-economic and behavioral data had a profound impact on the accuracy of predictive models. 
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Behavioral data, such as student participation in LMS activities, provided early warning signs of disengagement, which 

were strong indicators of poor academic performance. For instance, students with low levels of participation in discussion 

forums or who submitted assignments late were more likely to struggle academically [3][6]. Similarly, socio- economic 

factors like family income and parental education level were found to be critical predictors of student success. Students 

from lower socio-economic backgrounds often faced additional challenges, such as limited access to learning re- sources, 

which affected their academic outcomes [5][9][10]. 

One study found that integrating socio-economic data im- proved the model’s ability to predict at-risk students by 20- 

30% compared to models that relied solely on academic data [9]. Behavioral data, particularly from online learning 

platforms, provided a more real-time analysis of student engagement, allowing educators to intervene before students fell 

too far behind [3][9]. 

D. Challenges in Data Integration 

Despite the benefits, there were several challenges asso- ciated with integrating socio-economic and behavioral data into 

predictive models. One of the most significant issues was data privacy. Collecting sensitive socio-economic data, such as 

family income or parental education, raised ethical concerns about how this information would be used and protected 

[4][9][10]. 

Additionally, many studies faced difficulties with data di- versity. Most of the datasets used in the reviewed studies came 

from single institutions, which limited the generalizability of the findings. This reliance on small, localized datasets 

meant that models trained on these data were less applicable to broader educational contexts [1][6]. 

Another challenge was the lack of real-time data integra- tion. While many studies successfully used historical data to 

predict student outcomes, the absence of real-time behavioral data limited the ability to provide timely interventions 

[1][9]. Real-time data could significantly enhance predictive models by allowing institutions to react to changes in student 

behavior as they happen, rather than retrospectively [7]. 

4. LIMITATIONS AND FUTURE WORK 

While integrating socio-economic and behavioral data into student performance prediction models offers significant im- 

provements in predictive accuracy, several limitations remain. One of the key challenges is the availability and 

quality of data. Many studies rely on limited datasets from specific institutions, which restricts the generalizability of the 

models to other educational contexts. For instance, most datasets used in the reviewed studies were derived from 

Learning 

Management Systems (LMS) or Student Information Systems (SIS) at single institutions, which can create biases and 

reduce the applicability of the models across diverse educational environments [2][6]. The sample size of some studies is 

also a concern, as small datasets may not capture the full spectrum of student behaviors and socio-economic factors. 

Another significant limitation is the lack of real-time data integration. While many models provide accurate predictions 

based on historical data, they do not adapt to students’ evolving behaviors or changing socio-economic conditions during 

the course of their studies. This limits the practical application of the models in dynamic learning environments, where 

real-time interventions could prevent students from falling behind [1][7]. For example, a student’s behavior may change 

drastically during a semester due to personal or finan- cial difficulties, yet many models are unable to adjust their 

predictions accordingly. The inclusion of real-time behavioral data could offer more timely and effective interventions, 

but this requires more advanced data collection and processing capabilities that are currently lacking in many educational 

systems. 

Ethical and privacy concerns are another major limitation in using socio-economic and behavioral data for predictive 

modeling. The collection and use of sensitive socio-economic data, such as family income, parental education, or mental 

health status, raise questions about data privacy and student consent [4][10]. Although predictive models offer valuable 

insights, they must be implemented in a way that ensures the confidentiality of personal information and adheres to 

legal regulations such as GDPR. Moreover, the potential for bias in predictions is a concern, particularly when models 

disproportionately affect students from lower socio-economic backgrounds. If not carefully managed, predictive models 

could reinforce existing inequalities in educational outcomes [9][10]. 

Finally, model interpret ability remains a challenge. Many machine learning algorithms, especially complex ones like 

Neural Networks, function as ”black boxes,” making it difficult for educators and policymakers to understand how specific 

predictions are made. This lack of transparency can reduce trust in the models and limit their adoption in educational 
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settings. Future research should focus on developing more interpret-able models, such as decision trees or explainable AI 

techniques, to ensure that educators can confidently act on the predictions [5][8]. 

Future research should prioritize: 

• Expanding datasets to include a broader range of institu- tions, allowing for better generalization of results. 

• Developing models that integrate real-time behavioral data for more responsive interventions. 

• Addressing ethical concerns by ensuring transparency, student consent, and privacy protections in the use of socio-

economic data. 

• Improving model interpret-ability to enhance the trust and usability of predictive models for educators and decision-

makers [1][4][9][10]. 

5. CONCLUSION 

This review highlights the growing importance of in- tegrating socio-economic and behavioral data into stu- dent 

performance prediction models. While traditional models based solely on academic performance have their limitations, 

the inclusion of non-academic factors provides a more holistic view of a student’s potential for success. By leveraging 

machine learning techniques such as Random Forest and Support Vector Machines, studies have demonstrated that 

predictive accuracy can be significantly improved, particularly when identifying at-risk students early in their academic 

journeys [2][6][9]. This allows educational institutions to intervene more effectively, providing targeted support and 

resources to those who need them most. However, significant challenges remain. The lack of data diversity, limited real-

time integration, and eth- ical concerns surrounding the use of sensitive socio- economic data must be addressed before 

these models can be widely adopted. Additionally, the development of more interpret-able models is necessary to ensure 

that educators and decision-makers can confidently use these tools to improve student outcomes [5][9]. 

Future work should focus on expanding datasets, im- proving the real-time applicability of predictive models, and 

addressing privacy and fairness concerns in data collection and use. As educational institutions continue to adopt data-

driven decision-making practices, the integra- tion of socio-economic and behavioral data will become increasingly critical 

for building more accurate, equitable, and actionable predictive models. By doing so, we can better support students from 

all backgrounds, ensuring they receive the resources and interventions necessary to succeed in their academic pursuits 

[1][5][10]. 
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