

editor@ijprems.com

GB*- CONTINUOUS MAPS IN GRILL TOPOLOGICAL SPACES

P. Gomathi Rajakumari¹, jessie Theodore²

¹Research scholar (Reg. No: 23121242092003), Department of Mathematics & Research Center, Sarah Tucker College, Tirunelveli, India.

²Assistant Professor, Department of Mathematics & Research Center, Sarah Tucker College, Tirunelveli.

Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli -627012, TamilNadu, India.

e- mail: grkumari9495@gmail.com

ABSTRACT

In this paper, we have introduced and analyze a new class of $G\beta^*$ -continuous map in grill topological space. Its relation to various other continuous functions are investigated.

Keywords: $G\beta^*$ - closed sets, $G\beta^*$ - continuous maps,

2020 Mathematics Subject Classification: 54C05, 54C08.

1. INTRODUCTION

Choquet introduced the concept of grills on a topological space [3]. Hatir and Jafari [6] obtained a new decomposition of continuity in terms of grills. Antony Rex Rodgio and Jessie Theodore [2] introduced β^* - continuous maps in topological space using β^* - closed sets. In this paper, we have introduced and analyze a new class of $G\beta^*$ -continuous map in grill topological space (X, τ , G).

2. PRELIMINARIES

2.1 Definition: [3] A non-null collection G of subsets of a topological spaces X is said to be a grill on X if

- φ∉G
- $A \in G \text{ and } A \subseteq B \Longrightarrow B \in G$,
- A, B \subseteq X and A \cup B \in G \Rightarrow A \in G or B \in G.

2.2 Definition: Let (X, τ, G) be a grill topological space. A subset A in X is said to be

- ϕ -open [6] if $A \subseteq Int(\phi(A))$,
- $G\alpha$ -open[1] if $A \subseteq Int(\Psi(Int(A)))$,
- G-preopen [6] if $A \subseteq Int(\Psi(A))$,
- G-semi-open [1] if $A \subseteq \Psi(Int(A))$,
- $G\beta$ –open [1] if $A \subseteq Cl(Int(\Psi(A)))$.

The family of all Ga-open (resp. G-preopen, G-semi-open, G β -open) sets in a grill topological space (X, τ , G) is denoted by GaO(X) (resp. GPO(X), GSO(X), G β O(X)).

2.3 Definition:[12] A subset A of X is called a $G\beta^*$ -closed set if $G\beta cl(A) \subseteq int(U)$ whenever $A \subseteq U$ and U is ω -open in X. The class of all $G\beta^*$ -closed sets in X is denoted by $G\beta^*C(\tau)$. That is $G\beta^*C(\tau)=\{A \subset X: A \text{ is } G\beta^*\text{-closed in } X\}$.

2.4 Definition: A function $f: (X, \tau, G_X) \rightarrow (Y, \sigma, G_Y)$ is said to be

- grill α -continuous[1] if the inverse image of each open set of Y is G α -open.
- grill semi –continuous[1] if the inverse image of each open set of Y is G-semi-open
- grill pre continuous [6] if the inverse image of each open set of Y is G-preopen.
- grill β –continuous [1] if the inverse image of each closed set of Y is $G\beta$ –closed.
- grill g continuous [7] if the inverse image of each closed set of Y is Gg-closed.
- grill r g continuous [10] if the inverse image of each closed set of Y is Grg-closed.
- grill gsp -continuous[12] if the inverse image of each closed set of Y is Ggsp-closed.
- grill ω continuous [12] if the inverse image of each closed set of Y is G ω -closed.
- grill *g continuous[12] if the inverse image of each closed set of Y is G *g-closed
- grill g* continuous[11] if the inverse image of each closed set of Y is Gg*-closed.
- grill sg -continuous[9] if the inverse image of each closed set of Y is Gsg-closed.
- grill gs-continuous [13] if the inverse image of each closed set of Y is Ggs-closed

IJPREMS	INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT	e-ISSN : 2583-1062
	AND SCIENCE (IJPREMS)	Impact
www.ijprems.com editor@iiprems.com	(Int Peer Reviewed Journal)	Factor :
	Vol. 04, Issue 11, November 2024, pp : 123-126	7.001

• grill pre-semi-continuous[12] if the inverse image of each closed set of Y is G-pre-semi closed

• grill $\hat{\eta}^*$ -continuous[12] if the inverse image of each closed set of Y is $G\hat{\eta}^*$ -closed

3. GB*- CONTINUOUS MAPS IN GRILL TOPOLOGICAL SPACES

3.1 Definition: A map f: $X \rightarrow Y$ is called $G\beta^*$ - continuous if $f^{-1}(V)$ is $G\beta^*$ - closed in X for every closed set V in Y.

3.2 Proposition: Every continuous (respectively $G\alpha$ -continuous, G-semi continuous) map is $G\beta^*$ - continuous but not conversely.

Proof: The proof follows from the fact that every closed (respectively $G\alpha$ - closed, G- semi closed) set is $G\beta^*$ -closed.

The converses of Proposition is shown by the following example

3.3 Example: Let $X = \{a, b, c\}$, $Y = \{p, q\}$, $\tau = \{\phi, \{a\}, X\}$, $\sigma = \{\phi, \{q\}, Y\}$, $G_X = \{\{a\}, \{a, b\}, \{a, c\}, X\}$ and $G_Y = \{\{q\}, Y\}$. The map f: X \rightarrow Y define by f(a) = f(b) = p and f(c) = q is G β^* continuous. However f is none of G-semi-continuous, G α -continuous and continuous since for the closed set U= {p} in Y, f⁻¹(U) = {a, b} is none of G-semi closed, G α -closed and closed in (X, τ , G_X) but it is G β^* closed in (X, τ , G_X).

3.4 Proposition: Every $G\beta^*$ -continuous map is Ggsp-continuous (resp. $G\hat{\eta}^*$ - continuous) but not conversely. **Proof:** Since every $G\beta^*$ -closed set is Ggsp-closed (resp. $G\hat{\eta}^*$ -closed)

3.5 Example: Let X={a, b, c, d}, Y={p, q, r}, τ ={ ϕ ,{a, b}, X}, σ = { ϕ ,{p},{r},{p, r},Y}, G_X = {{a},{a, b}, {a, c},{a, d}, {a, b, c},{a, b, d},{a, c, d}, X} and G_Y = {{q},{p,q},{q, r}, Y}. Define f: (X, τ , G_X) \rightarrow (Y, σ , G_Y) by f(a)=f(d)=p, f(b)=q, f(c)=r. Then it can be seen that f is Ggsp-continuous and G $\hat{\eta}^*$ -continuous, but not G β^* continuous, because for the closed set {q} in Y, f⁻¹({q}) = {b} is not G β^* - closed in (X, τ , G_X).

3.6 Proposition: The following examples show that $G\beta^*$ -continuity is independent of $G\omega$ -continuity and Grg-continuity.

3.7 Example: Let $X=Y=\{a, b, c\}, \tau=\{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \sigma=\{\phi, \{a, c\}, Y\}, G_X = \{\{b\}, \{a, b\}, \{b, c\}, X\}$ and $G_Y = \{\{a\}, \{a, b\}, \{a, c\}, Y\}$. Let f: $(X, \tau, G_X) \rightarrow (Y, \sigma, G_Y)$ be the identity map. Here $G\beta^*c(\tau)=P(X)-\{a, b\}$. Then f is $G\beta^*$ -continuous but none of G ω - continuity and Grg-continuous, since $\{b\}$ is closed in Y but $f^{-1}(\{b\}) = \{b\}$ is none of G ω - closed and Grg-closed in (X, τ, G_X) .

3.8 Example: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}, \sigma = \{\phi, \{a, c\}, Y\},$

 $G_X = \{\{b\}, \{a, b\}, \{b, c\}, X\}$ and $G_Y = \{\{a\}, \{a, b\}, \{a, c\}, Y\}$. Let f: $(X, \tau, G_X) \rightarrow (Y, \sigma, G_Y)$ be the identity map. Here $G\beta^*c(\tau) = \{\phi, \{a\}, \{b, c\}, X\}$. Then f is G ω -continuous and Grg continuous but not $G\beta^*$ -continuous for f⁻¹($\{b\}$)= $\{b\}$ is not $G\beta^*$ -closed in (X, τ, G_X) .

3.9 Proposition: The following examples, show that $G\beta^*$ -continuity is independent of Gg-continuity, Gsg-continuity and Ggs-continuity.

3.10 Example: Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$, $\sigma = \{\phi, \{b\}, Y\}$, $G_X = \{\{b\}, \{a, b\}, \{b, c\}, X\}$ and $G_Y = \{\{a\}, \{a, b\}, \{a, c\}, Y\}$. Let f: $(X, \tau, G_X) \rightarrow (Y, \sigma, G_Y)$ be the identity map. Then f is Gg-continuous, Ggs-continuous and Gsg-continuous, but not G β^* -continuous because for the closed set $\{a, c\}, f^{-1}(\{a, c\}) = \{a, c\}$ is not G β^* -closed in (X, τ, G_X) .

3.11 Example: Let $X=Y=\{a, b, c\}, \tau=\{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \sigma=\{\phi, \{a, c\}, Y\}, G_X = \{\{b\}, \{a, b\}, \{b, c\}, X\}$ and $G_Y = \{\{a\}, \{a, b\}, \{a, c\}, Y\}$. Let f: $(X, \tau, G_X) \rightarrow (Y, \sigma, G_Y)$ be the identity map. Then f is G β^* -continuous but none of Gg- continuous, Gsg-continuous and Ggs-continuous because for the closed set $\{b\}$ in Y, $f^{-1}(\{b\}=\{b\}$ is G β^* -closed but none of Gg-closed, Gsg-closed and Ggs-closed.

3.12 Proposition: The following examples show that $G\beta^*$ -continuity is independent of G-pre-continuity, G-semi-pre-continuity and G-pre-semi-continuity.

3.13 Example: Let X=Y= {a, b, c, d}, $\tau = \{ \phi, \{a, b\}, X \}$, $\sigma = \{ \phi, \{c\}, Y \}$, $G_X = \{ \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X \}$ and $G_Y = \{ \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, Y \}$. Let f: $(X, \tau, G_X) \rightarrow (Y, \sigma, G_Y)$ be the identity map. Then f is G β *-continuous but none of G-pre-continuous, G-semi-pre-continuous and G-pre-semi-continuous, since $\{a, b, d\}$ is closed in Y but f⁻¹($\{a, b, d\}$) = $\{a, b, d\}$ is none of G-preclosed, G-semi-preclosed and G-pre-semiclosed in (X, τ, G_X) .

3.14 Example: Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$, $\sigma = \{\phi, \{c\}, Y\}$, $G_X = \{\{b\}, \{a, b\}, \{b, c\}, X\}$ and $G_Y = \{\{a\}, \{a, b\}, \{a, c\}, Y\}$. Let f: $(X, \tau, G_X) \rightarrow (Y, \sigma, G_Y)$ be the identity map. Then f is G-pre-continuous, G-semi-pre-continuous and G-pre-semi-continuous, but not $G\beta^*$ -continuous because for the closed set $\{a, b\}, f^{-1}(\{a, b\}) = \{a, b\}$ is not $G\beta^*$ -closed in (X, τ, G_X) .

IJPREMS	INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT	e-ISSN : 2583-1062
	AND SCIENCE (IJPREMS)	Impact
www.ijprems.com	(Int Peer Reviewed Journal)	Factor :
editor@ijprems.com	Vol. 04, Issue 11, November 2024, pp : 123-126	7.001

3.15 Proposition: The following examples show that $G\beta^*$ -continuity is independent of G^*g -continuity and Gg^* -continuity.

3.16 Example: Let $X = \{a, b, c\} = Y$, $\tau = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}$, $\sigma = \{\varphi, \{a, c\}, Y\}$, $G_X = \{\{b\}, \{a, b\}, \{b, c\}, X\}$ and $G_Y = \{\{a\}, \{a, b\}, \{a, c\}, Y\}$. Let f: $(X, \tau, G_X) \rightarrow (Y, \sigma, G_Y)$ be the identity map. Then f is G β^* -continuous but neither G g^* - continuous nor G * g-continuous because for the closed set $\{b\}$ is G β^* -closed but neither G g^* -closed in (X, τ, G_X) .

3.17 Example: Let X= {a, b, c, d}, Y= {a, b, c}, $\tau = \{ \phi, \{a, b\}, X\}, \sigma = \{ \phi, \{a, c\}, Y\}, G_X = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X\}$ and $G_Y = \{\{a\}, \{a, b\}, \{a, c\}, Y\}$. Let f: $(X, \tau, G_X) \rightarrow (Y, \sigma, G_Y)$ be the identity map. Then f is Gg*- continuous and hence G*g-continuous but not Gβ*-continuous because for the closed set {b} is Gg*-closed and hence G*g-closed but not Gβ*-closed in (X, τ, G_X) .

From the above discussion are shown in the following implications:

3.18 Proposition: The composition of two $G\beta^*$ -continuous maps need not be $G\beta^*$ -continuous.

3.19 Example: Let X=Y={a, b, c}, Z={p, q}, $\tau={\phi,{a},{b},{a, b}, X}, \sigma={\phi, {a}, Y}, \eta={\phi,{p}, Z} G_X$ = {{b},{a, b}, {b, c}, X}, $G_Y = {\{a\}, \{a, b\}, \{a, c\}, Y\}$ and $G_Z = \{\{p\}, Z\}$. Let f: (X, τ, G_X) \rightarrow (Y, σ, G_Y) be the identity map and define a map g: (Y, σ, G_Y) \rightarrow (Z, η, G_Z) by g(a)=g(b)=q and g(c)=p. Then both f and g are G β *- continuous. Consider the closed set A= {q} in (Z, η). For this set (g \circ f)⁻¹(A) = f⁻¹ (g⁻¹(A)) = {a, b} is not G β *-closed in (X, τ, G_X). Therefore g \circ f is not G β *-continuous.

3.20 Proposition: If f: $X \rightarrow Y$ is $G\beta^*$ -continuous and g: $Y \rightarrow Z$ is continuous, then their composition $g \circ f: X \rightarrow Z$ is $G\beta^*$ -continuous.

Proof: Clearly follows from definitions.

3.21 Theorem: A map f: $X \rightarrow Y$ is $G\beta^*$ - continuous if and only if $f^{-1}(U)$ is $G\beta^*$ -open for every open set U in Y.

Proof: Let f: X→Y be G β *-continuous and U be an open set in Y. Then $f^{-1}(U^C)$ is G β * closed in X. But $f^{-1}(U^C) = (f^{-1}(U))^C$ and so $f^{-1}(U)$ is G β *-open in X. Converse is similar.

4. CONCLUSION

In this paper, we have introduced and analyzed $G\beta^*$ -continuous map in grill topological space. Its relation to various other continuous functions are investigated. Also verified the composition of two $G\beta^*$ -continuous maps need not be $G\beta^*$ -continuous.

5. REFERENCE

- [1] Al-Omari & Noiri, T 2011, 'Decomposition of continuity via grills', Jordan J. Math. Stat., 4(1), 33-46.
- [2] Antony Rex Rodgio. J & Jessie Theodore, 2013, Notions via β^* continuous maps in topological space', International Journal of Science, Engineering and Technology Research,(2), 818-822.
- [3] Chattopadhyay, K. C & Thron, W. J, 1977, 'Extensions of closure spaces', Can. J. Math., 29 (6), 1277-1286.
- [4] Chattopadhyay, K. C, Njastad, O & Thron, W. J, 1983, 'Merotopic spaces and extensions of closure spaces', Can. J. Math., 35 (4), 613-629.
- [5] Dhananjoy Mandal & Mukherjee, M.N 2012, 'On a type of generalized closed sets', Bol. Soc. Paran. Mat. 301, 67-76.
- [6] Hatir, E & Jafari, S 2010, 'On some new calsses of sets and a new decomposition of continuity via grills', J. Adv.Math.Studies, 3 (1), 33-40.

- [7] Mukherjee & Dhananjoy Mandal, M.N 2012, 'On a type of generalized closed sets', Bol. Soc. Paran. Mat. 301, 67-76.
- [8] Roy, B & Mukherjee, M. N 2007, 'On a typical topology induced by a grill', Soochow J. Math, 33 (4), 771-786.
- [9] Shyamapada Modak, Decompositions of Generalized Continuity in Grill Topological Spaces, Thai Journal of Mathematics Volume 13 (2015) Number 2 : 511–518.
- [10] Thenmozhi1 P, Kaleeswari M & Maheswari N, 'Regular Generalized Closed Sets in Grill Topological Spaces', International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064
- [11] Thenmozhi P, Kaleeswari, M & Maheswari, N 2017, 'Strongly g*- Closed Sets in Grill Topological Spaces', International Journal of Mathematics Trends and Technology (IJMTT) – Volume 51 Number 1
- [12] Gomathi Rajakumari, Jessie Theodore, 'G β *-closed set in grill topological space', Sarah Research Journal (ISSN 2319 5134) (Under review process).
- [13] Vibin Salim Raj, S, Senthil kumaran, V & Palaniappan, Y 2021, 'Generalised Semi Closed Sets In Grill Topological Spaces', Journal of Advance Research in Mathematics and Statistics (ISSN: 2208-2409)