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ABSTRACT 

This paper presents the detailed performance of p-channel tunnel field-effect transistors (TFETs) using high-quality gate 

dielectrics and the Wentzel-Kramers-Brillouin (WKB)[1] method to calculate the probability of tunneling. The use of 

high-k materials[3], especially hafnium oxide (HfO2), increases the gate control over the channel, thereby improving 

the lower threshold and lowering the flow rate. In addition, the WKB approach provides a more accurate modeling of 

the quantum mechanical tunneling process and shows the barrier effect on the transporters. The electric field distribution 

across the device is determined using Poisson's equation and the effect of high-k dielectric. The obtained I-V 

characteristics show better performance compared to conventional gate dielectric components. This comprehensive 

analysis demonstrates the potential of high-quality dielectrics and advanced quantum mechanical modeling to optimize 

TFET[2] performance, making it a promising approach for future low-power electronics applications. 
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1. INTRODUCTION 

Tunnel Field-Effect Transistors (TFETs) have been the subject of extensive research due to the pursuit of improved 

performance in semiconductor devices, especially for applications that need high speed and low power. Comparing 

TFETs to conventional MOSFETs, there are a number of benefits, such as smaller sub-threshold swing and lower power 

consumption, due to their utilization of quantum mechanical tunneling for carrier transport.P-channel TFETs are one of 

the more promising TFET[2] architectures when it comes to complementary logic circuits because of their ability to 

operate at high speeds and with better energy efficiency. While silicon (Si) and germanium (Ge) are commonly 

employed as channel materials in traditional TFETs[21], new developments have concentrated on using high-k gate 

dielectrics to further improve device performance.When compared to conventional silicon dioxide (SiO2), high-k 

dielectrics like halogen oxide (HfO2) offer better gate control over the channel. In order to achieve low-power operation, 

this leads to enhanced sub-threshold slope, decreased leakage currents, and more effective electrostatic control. 

Accurately estimating and comprehending the carrier tunneling probability via the potential barrier is a major difficulty 

in TFET modeling.For this reason, the Wentzel-Kramers-Brillouin (WKB) approximation has shown to be a potent tool, 

providing a more accurate computation of tunneling rates by taking into account quantum mechanical factors. The WKB 

approximation offers important insights into device performance by breaking down the difficult challenge of tunneling 

through a potential barrier into a more understandable form.To grasp the electric field distribution throughout the device, 

Poisson's equation must be solved in conjunction with the WKB approximation. Poisson's equation explains how the 

electric potential changes in response to boundary conditions and charge distributions, which has a direct impact on the 

likelihood of tunneling and the general behavior of the device. For the purpose of forecasting TFET[2] performance 

under varied operating conditions, accurate modeling of the electric field is also essential.This work intends to improve 

the p-channel TFET performance analysis by the incorporation of high-k dielectrics and the use of the WKB 

approximation in tunneling probability computations. Through the integration of these sophisticated methodologies into 

the simulation framework, the work offers an all-encompassing assessment of TFETs with enhanced gate control and 

quantum mechanical precision. 

Tunnel Field-Effect Transistor (p-TFET) 

A low-power semiconductor device is called a tunnel field-effect transistor (TFET). TFETs use quantum tunneling to 

regulate the current flow, as opposed to conventional Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs), 

which rely on thermionic emission. TFETs can achieve much lower power consumption than MOSFETs because of this 

fundamental difference. The electric field the gate produces when a voltage is applied to it modifies the width of the 

energy barrier between the source and the drain. A current can be produced when electrons from the n-type source tunnel 

through this energy barrier and enter the p-type drain. Because of this tunneling process' extreme sensitivity to gate 

voltage, current flow may be precisely controlled. Because TFETs have a subthreshold swing (SS) that is far lower than 

MOSFETs', they use less power and produce less leakage current. 

Model: The current is modeled as Id = Ioff ∙ exp ((Vg − Vth)/S). Here, Ioff is the off-state leakage current, and S is the 

subthreshold slope. 
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2. PROPOSED METHOD 

 

Using expert tunneling probability modeling with the WKB approximation and integrating high-k gate dielectrics[10] 

are the two methods suggested to improve the performance of p-channel TFETs. The process can be divided into 

multiple crucial steps: 

Device Modeling and Parameter Definition: 

A. Specify the geometric dimensions, gate dielectric, and channel material of the p-channel TFET. 

B. Establish the material's characteristics and physical constants, such as oxide thickness, dielectric constants, and 

effective mass of carriers. 

High-k Dielectric Integration: 

Replace traditional silicon dioxide (SiO2) with a high-k dielectric material, such as hafnium oxide (HfO2), to enhance 

gate control and lower leakage currents 

Electric Field Calculation: 

To find the distribution of the electric field throughout the device, solve Poisson's equation. To solve the potential 

distribution, this entails discretizing the device into a spatial grid and using finite difference techniques. 

WKB Approximation for Tunneling Probability: 

To get the carrier tunneling probability via the potential barrier, use the WKB approximation. In order to do this, the 

energy difference over the barrier width must be integrated squarely. 

Current Calculation: 

Utilizing the tunneling probability derived from the WKB approximation along with additional device parameters, 

compute the drain-source current (Ids). 

Performance Analysis and Comparison: 

• Examine and contrast the I-V characteristics of the high-k dielectric TFET with those of conventional devices. 

• Assess performance indicators like on-current, off-current, and sub-threshold slope. 

WKB Approximation 

The Schrödinger equation in quantum physics is solved using the semi-classical WKB Approximation (Wentzel-

Kramers-Brillouin Approximation). Understanding quantum tunneling processes, as those seen in Tunnel FETs 

(TFETs), is very helpful. In situations where the potential fluctuates slowly over space in relation to the particle's de 

Broglie wavelength, the WKB technique approximates the wavefunction of a quantum system. 
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3. RESULTS -DISCUSSION 

V-I Characteristics of p-Channel TFET : 

 

Figure-1-V-I Characteristics of p-hannel Tunnel FET 

Figure-1:  Displays Exponential behavior below the threshold voltage, highlighting the TFET’s subthreshold steepness 

and its ability to conduct with low gate voltages. Saturation behavior above the threshold voltage, where the current 

becomes relatively constant as the device turns on. These characteristics illustrate the TFET's unique ability to operate 

with a low subthreshold slope, making it potentially useful for low-power and high-speed applications. 

V-I Characteristics of p-Channel TFET with High-k Dielectric and WKB Approximation:   

 

Figure-2-V-I Characteristics of p-Channel TFET with High-k Dielectric and WKB Approximation 

Figure-2: Subthreshold Region (Gate Voltage < Threshold Voltage): demonstrates how, as the gate gets closer to 

the threshold voltage, the current grows exponentially with increasing gate voltage. Tunneling is made easier by the 

high-k dielectric, which might lead to an increase in current. Because the WKB approximation takes into account the 

intricate tunneling mechanism in the Subthreshold Region (Gate Voltage < Threshold Voltage), it yields an exponential 

increase in current that is more realistic.In the subthreshold area, a device with a high-k dielectric usually exhibits a 

larger drain current than one with a conventional dielectric.This is due to tunneling has a lower effective barrier 

height.The current calculation accurately captures the genuine quantum mechanical tunneling process thanks to the 

WKB approximation. As a result, the current rise in the subthreshold zone may be represented more accurately. 
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Figure-3 Potential Distribution in the TFET 

Potential Distribution: Figure-3- The plot illustrates the variations in electric potential inside the three-dimensional 

TFET volume. Generally speaking, the potential values inside the device will drop from the applied voltage at the 

boundary to lower values. 

• x = Lx/2: This slice shows the potential distribution in the yz-plane (midplane of the device). 

• y = Ly/2: This slice shows the potential distribution in the xz-plane (midplane of the device). 

• z = Lz/2: This slice shows the potential distribution in the xy-plane (midplane of the device). 

Potential Gradient: As you go away from the boundaries where the voltage is applied, the potential usually drops. 

Higher potential values are displayed at these boundaries. 

Device Behavior: The distribution facilitates comprehension of possible modifications inside the device that may have 

an impact on the TFET's overall efficiency and switching characteristics. 

4. CONCLUSION 

In the final analysis, by improving gate control and significantly lowering leakage currents, the integration of high-k 

dielectrics, namely Hafnium Oxide (HfO2), into p-channel Tunnel Field-Effect Transistors (TFETs) represents a notable 

gain in device performance. A more accurate description of quantum mechanical tunneling is possible through the use 

of the Wentzel-Kramers-Brillouin (WKB) approximation, which also offers deeper insights into the effects of the 

potential barrier on carrier transport. Moreover, Poisson's equation is used to solve the electric field distribution, which 

confirms the greater performance gains made. Taken together, these advancements demonstrate how high-k dielectrics 

and sophisticated quantum mechanical modeling can propel TFET technology forward, making it an attractive option 

for next-generation low-power electronic applications. . 
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